3. Source Selection

Olaf Hartig
University of Waterloo
“Ingredients” for LD Query Execution

- Data retrieval approach
 - Data source selection
 - Data source ranking (optional, for optimization)

- Result construction approach
 - i.e., query-local data processing

- Combining data retrieval and result construction

Ingredients for LD Query Execution

<table>
<thead>
<tr>
<th>?actor</th>
<th>?loc</th>
</tr>
</thead>
<tbody>
<tr>
<td>http://mdb.../Ric</td>
<td>http://geo.../Rome</td>
</tr>
</tbody>
</table>
Query-Specific Relevance of URIs

- **Definition:** A URI is relevant for a given query if looking up this URI gives us data that contributes to the query result.

- **Example:**
 - Conjunctive query (BGP): \(\{ (Bob, \text{lives in}, ?x) , (?y, \text{lives in}, ?x) \} \)
 - Looking up URI \(Bob \) gives us: \(\{ (Bob, \text{lives in}, Berlin) , \ldots \} \)
 - Looking up URI \(Alice \) gives us: \(\{ (Alice, \text{lives in}, Berlin) , \ldots \} \)
 - Hence, \(\mu = \{ ?x \rightarrow Berlin , ?y \rightarrow Alice \} \) is a solution
 - Thus, URIs \(Bob \) and \(Alice \) are relevant for the query

- **Simply contributing a matching triple is not sufficient:**
 - Suppose, URI \(Charles \) gives us \(\{ (Charles, \text{lives in}, London) , \ldots \} \)
 - Since the matching triple cannot be used for computing a solution, URI \(Charles \) is not relevant.
Objective of Source Selection

• Source selection: Given a Linked Data query, determine a set of URIs to look up

• Ideal source selection approach:
 • For any query, selects all relevant URIs
 • For any query, selects relevant URIs only

• Irrelevant URIs are not required to answer the query
 • Avoiding their lookup reduces cost of query executions significantly!

• Caveat:
 • What URIs are relevant (resp. irrelevant) is unknown before the query execution has been completed.
Outline

- Objectives of Source Selection
- Index-Based Strategy
 - General Idea
 - Possible Index Structures
- Live Exploration Strategy
- Comparison of both Strategies
- Combining both Strategies
Idea of Index-Based Source Selection

- Use a **pre-populated index** structure to determine relevant URIs (and to avoid as many irrelevant ones as possible)

- Example: triple-pattern-based indexes

\[
\text{Key: } tp \\
\text{Entry: } \{ uri_1, uri_2, \ldots, uri_n \}
\]

- For single triple pattern queries, source selection using such an index structure is sound and complete (w.r.t. the indexed URIs)
General Properties of Lookup Indexes

- **Index entries:**
 - Usually, a set of URIs
 - Each URI in such an entry may be paired with a cardinality (utilized for source ranking)
 - Indexed URIs may appear multiple times (i.e., associated with multiple index keys)

- **Type of index keys depends on the particular index structure used**
 - e.g., triple patterns

- **Represent a summary of the data from all indexed URIs**
 - Perfect summary: index keys are individual elements
 - Approximate summary: index keys may range over elements
Perfect Summaries

- Triple-pattern-based indexes

- “Inverted URI Indexing” [UHK+11]
 - Key: uri
 - Entry: \{ uri_1, \ldots, uri_n \}

- “Schema-level Indexing” [UHK+11]
 - Index keys: schema elements
 - Like a triple-pattern-based index that considers only two types of triple patterns: (?s, property, ?o) and (?s, rdf:type, class)

- Tian et al. [TUY11]
 - Index keys: Unique encodings of combinations of triple patterns (i.e., BGPs) frequently found in a query workload
Approximate Summaries

• Recall, index keys may range over elements
• Advantage: approximation reduces index size
• Disadvantage: index lookup may return false positives
• Examples of data structures used:
 • Multidimensional histogram [UHK+11]
 • QTree [HHK+10, UHK+11]
Multidimensional Histograms

- Transform RDF triples to points in a 3-dimensional space

 \((Bob, \text{ lives in, Berlin}) \rightarrow \text{hash function} \rightarrow (422, 247, 143)\)
Multidimensional Histograms

• Transform RDF triples to points in a 3-dimensional space

 \((\text{Bob, lives in, Berlin}) \rightarrow \text{hash function} \rightarrow (422, 247, 143)\)

• Buckets partition that space into disjoint regions

• Indexing: Each bucket contains entries for all URIs whose data includes an RDF triple in the corresponding region

• Source selection:

 • Transform triple patterns to lines / planes in the space

 \((\text{Bob, lives in, ?x}) \rightarrow (422, 247, ?)\)

 • Any URI relevant for the triple pattern may only be contained in buckets whose region is touched by the line / plane

 • Pruning due to non-overlapping regions
QTree

- Combination of histograms and R-trees (i.e., hierarchical)

- Leaf nodes are the buckets
 - Different buckets may represent regions of different size (in contrast to fixed-sized regions used for MDH)
 - Non-populated regions are ignored

- Deals more efficiently with a space that is populated sparsely or contains many clusters
Index Construction

- Given a set of URIs to index, each of these URIs needs to be looked up and its data needs to be retrieved
- Alternative: crawl the Web to obtain URIs and their data
- Alternative: populate index as a by-product of executing queries using live-exploration-based source selection
Index Maintenance

- Adding additionally discovered URIs
- Keeping the index in sync with original data
 - Still an open research problem
 - Similar to index maintenance in information retrieval and view maintenance in database systems
Outline

- Objectives of Source Selection
- Index-Based Strategy
 - General Idea
 - Possible Index Structures
- Live Exploration Strategy
- Comparison of both Strategies
- Combining both Strategies
Live Exploration

- **General idea:** Perform a recursive URI lookup process at query execution runtime
 - Start from a set of seed URIs
 - Explore the queried Web by traversing data links

- **Retrieved data serves two purposes:**
 1. Discover further URIs
 2. Construct query result

- **Lookup of URIs may be constrained**
 (i.e., not all links need be traversed)
 - Natural support of reachability-based query semantics
Comparison to Focused Crawling

Focused Crawling vs. **Live Exploration**

- **Focused Crawling**
 - URIs qualify for lookup because of their high relevance for a topic
 - Separate pre-runtime (or background) process
 - Crawler populates a search index or a local database

- **Live Exploration**
 - Relevance of URIs related to the query at hand
 - Essential part of the query execution process itself
 - Live exploration aims to discover data for answering a particular query
Outline

- Objectives of Source Selection ✓
- Index-Based Strategy ✓
 - General Idea
 - Possible Index Structures
- Live Exploration Strategy ✓
- Comparison of both Strategies
- Combining both Strategies
Live Exploration – vs. – Index-Based

- Possibilities for parallelized data retrieval are limited
 - Data retrieval adds to query execution time significantly
- Usable immediately
 - Most suitable for “on-demand” querying scenario
- Depends on the structure of the network of data links

- Data retrieval can be fully parallelized
 - Reduces the impact of data retrieval on query exec. time
- Usable only after initialization phase
- Depends on what has been selected for the index
- May miss new data sources

None of both strategies is superior over the other w.r.t. result completeness (under full-Web query semantics).

- Both strategies may miss (different) solutions for a query
Hybrid Source Selection

Why not get the best of both strategies by combining them?

• Ideas:
 • Use index to obtain seed URIs for live exploration (e.g., “mixed strategy” [LT10])
 • Feed back information discovered by live exploration to update, to expand, or to reorganize the index
 • Use data summary for controlling a live exploration process (e.g., by prioritizing the URIs scheduled for lookup)
Outline

- Objectives of Source Selection ✓
- Index-Based Strategy ✓
 - General Idea
 - Possible Index Structures
- Live Exploration Strategy ✓
- Comparison of both Strategies ✓
- Combining both Strategies ✓

Next part: 4. Execution Process ...
These slides have been created by Olaf Hartig for the WWW 2013 tutorial on Link Data Query Processing.

Tutorial Website: http://db.uwaterloo.ca/LDQQTut2013/

This work is licensed under a Creative Commons Attribution-Share Alike 3.0 License (http://creativecommons.org/licenses/by-sa/3.0/)

(Slides 10, 11, and 12 are inspired by slides from Andreas Harth [HHK+10] – Thanks!)