
Parallel Data Generation for Performance
Analysis of Large, Complex RDBMS

Tilmann Rabl and Meikel Poess
Presented by Mohammad Sadoghi

Agenda
 Motivation

 Data generation for DBMS benchmarking

 Classification of data dependencies

 Generation of data dependencies

 Conclusions

2

Motivation

 Testing performance of today’s data management systems
is becoming increasingly difficult:

1. Data growth rate

2. System complexity

3. Data complexity

3

Data Growth Rate
 Amount of data kept in today’s systems is growing

exponentially:
 Companies retain more data for a longer period of time

 For legal purposes
 For accounting purposes
 To gain more insight into their business

 Social media sites collect personal information at a rapid pace *

 Facebook data 2007 15 TBytes
 Facebook data 2010 700 TBytes

 It is all possible, because hardware is cheap and powerful
 Hard drives, CPUs, etc.

*Thusoo et al. Hive - a petabyte scale data warehouse using Hadoop. ICDE 2010: 996-10054

System Complexity

 Dramatic increase in hardware used in TPC-H
benchmarks between 2001 and 2011:

5

1

64

0

20

40

60

80

100

2001 2011

Number of Nodes

64x

128

4320

0

1000

2000

3000

4000

5000

2001 2011

Main Memory [GBytes]

33.8x

64

720

0

200

400

600

800

1000

2001 2011

Number of Cores

11.3x

Data Complexity
 Systems capture more sophisticated data
 Number of tables
 Number of columns
 Data dependencies

 For performance reasons systems store data with
dependencies:
 Foremost seen in de-normalized data warehouse schemas,
 But also in OLTP systems

6

Data Generation Requirements for DBMS
Benchmarking

7

1. Generate Petabytes of data

2. Generate data in parallel
 Across hundreds of physical nodes
 Across multiple CPU/cores

3. Able to generate complex data deterministically
 Various interdependencies
 Repeatable generation

Agenda
 Motivation

 Data generation for DBMS benchmarking

 Classification of data dependencies

 Generation of data dependencies

 Conclusions

8

Methods of Data Generation
 Application specific
 Implementation overhead
 Limited adaptability
 Fast outdated

 Client simulation
 Graph based
 Very accurate (complex dependencies)
 Slow
 Limited repeatability

 Statistical distributions
 Based on probability
 Fast
 Repeatable
 Based on random numbers

9

Random Number Generation
 Pseudo random numbers
 Fast
 Repeatable

 Linear random number generation
 High quality random numbers
 rng(n) = lrng(lrng(…(lrng(seed))…))

 Parallel random number generation
 Fast random numbers
 Random hash *

 rng(n) = prng(seed+n)

x := 3935559000370003845 * i
+ 2691343689449507681 (mod 2^64)

x := x xor (x right−shift 21)
x := x xor (x left−shift 37)
x := x xor (x right−shift 4)
x := 4768777513237032717 * x (mod 2^64)
x := x xor (x left−shift 20)
x := x xor (x right−shift 41)
x := x xor (x left−shift 5)
Return x

* Press et al. Numerical Recipes –The Art of Scientific Computing. 2007. Cambridge University Press.10

Deterministic Data Generation
 Exploits determinism in random number generation
 Seed determines random sequence
 Every value can be re-calculated

 Generic data generator
 Parallel Data Generation Framework (PDGF)
 XML specification defines schema

11

Data Generators in PDGF
 Data generators are functions
 Domain: random values
 Codomain: data domain
 Same random number results in same value

 Examples
 Dictionary

 Random number % row count
 Number

 Random number % range + offset
 If multiple random numbers required

 Random number is seed

12

Seeding Strategy

 Hierarchical seeding strategy
 Schema Table  Column  Row  Generator
 Uses deterministic seeds
 Guarantees that n-th random number determines n-th value
 Even for large schemas all seeds can be cached

 Repeatable, deterministic generation

13

Parallel Data Generation

 Each field can be computed independently
 Allows for a static scheduling approach
 Supports horizontal partitioning of tables
 Results in linear speedup

14

TPC-H Generation Speed

15

 16 node HPC cluster
 Each with 2 QuadCore, 2 HDDs, RAID 0
 Total of 32 processors, 128 cores, 256 threads, 32 HDDs

 TPC-H data set
 1 GB, 10 GB, 100 GB, 1TB – 1, 10, 16 nodes

 Linear speedup, linear scale-out
 Fast, parallel data generation on modern hardware

Agenda
 Motivation

 Data generation for DBMS enchmarking

 Classification of data dependencies

 Generation of data dependencies

 Conclusions

16

Ongoing Example

 Represents a data warehouse scenario
 Simplification of TPC-H / star schema
 De-normalized dimensions

 Can grow to enormous sizes
 E.g. largest TPC-H result: 30,000 GBytes of raw data

 Multiple data dependencies

17

Intra Row Dependency

 Dependency between fields of a single row
 Common for different representations of the same data
 Other Examples:
 VAT  zip code of purchase
 City and state  zip code

 Functional dependency: {DateStamp} {Year,Quarter,Week}

18

Intra Table Dependency

 Dependency between fields of different rows
 Simple example: surrogate key
 De-normalized fact table
 Merge of orders and lineitems (e.g. TPC-C, TPC-H)
 Multiple lineitems per order (between min and max)

19

Intra Table Dependency II

 Time related intra table dependency
 History keeping dimension
 Stores the evolution of a dimension
 Incrementing surrogate key
 Multiple entries per CustID
 Monotonic increasing StartDate per CustID
 Matching EndDate and StartDate for successive entries per CustID

20

Intra Table Dependency III

 Intra table dependency from multi-valued dependency
(MVD)

 Usually poor schema design
 Possibly intended by benchmark designer

 Multiple addresses and phone numbers per customer
 MVDs: {CustID}{Address} and {CustID}{Telephone}

21

Inter Table Dependency

 Dependency between fields of different tables
 Most common: referential integrity
 Foreign key must exist

 Redundant data
 Additional data structures: materialized views
 Aggregation of daily orders per customer

22

Agenda
 Motivation

 Data generation for DBMS benchmarking

 Classification of data dependencies

 Generation of data dependencies

 Conclusions

23

Intra Row Dependency Generation
 Intra row dependency
 Affect only a single row

 Solution I
 Recalculate values

 Solution II
 Cache single row
 Faster

24

Intra Table Dependency Generation
 Surrogate key
 Use row number

 Sorted data / time related dependency
 Serial generation
 Future work

 Multi valued dependency
 Generate multiple values at once

25

Inter Table Dependency Generation

 Reference Generation
 SchemaTable  Column  Row  Row  Generator
 Randomly pick a referenced row
 Recalculate referenced value
 Supports various distributions

 Aggregation
 Recalculate multiple values

26

Agenda
 Motivation

 Data generation for DBMS benchmarking

 Classification of data dependencies

 Generation of data dependencies

 Conclusions

27

Conclusions
 Requirements of modern benchmark data generation

 Large data, large systems, complex data

 Dependencies in relational data
 Intra row, intra table, inter table

 Generic data generation
 Parallel Data Generation Framework
 Fast, parallel generation
 Support for intra row and inter table dependencies
 Some support for intra table dependencies
 Currently evaluated by the TPC

 Future Work
 Further dependencies
 Implement additional intra table dependencies

28

Thank You!

 Questions?

29

	Parallel Data Generation for Performance Analysis of Large, Complex RDBMS
	Agenda
	Motivation
	Data Growth Rate
	System Complexity
	Data Complexity
	Data Generation Requirements for DBMS Benchmarking
	Agenda
	Methods of Data Generation
	Random Number Generation
	Deterministic Data Generation
	Data Generators in PDGF
	Seeding Strategy
	Parallel Data Generation
	TPC-H Generation Speed
	Agenda
	Ongoing Example
	Intra Row Dependency
	Intra Table Dependency
	Intra Table Dependency II
	Intra Table Dependency III
	Inter Table Dependency
	Agenda
	Intra Row Dependency Generation
	Intra Table Dependency Generation
	Inter Table Dependency Generation
	Agenda
	Conclusions
	Thank You!

