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Motivation

 Testing performance of today’s data management systems 
is becoming increasingly difficult:

1. Data growth rate

2. System complexity

3. Data complexity
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Data Growth Rate
 Amount of data kept in today’s systems is growing 

exponentially:
 Companies retain more data for a longer period of time

 For legal purposes
 For accounting purposes
 To gain more insight into their business

 Social media sites collect personal information at a rapid pace * 

 Facebook data 2007 15 TBytes
 Facebook data 2010 700 TBytes

 It is all possible, because hardware is cheap and powerful 
 Hard drives, CPUs, etc.

*Thusoo et al. Hive - a petabyte scale data warehouse using Hadoop. ICDE 2010: 996-10054



System Complexity

 Dramatic increase in hardware used in TPC-H 
benchmarks between 2001 and 2011:
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Data Complexity
 Systems capture more sophisticated data
 Number of tables
 Number of columns
 Data dependencies

 For performance reasons systems store data with 
dependencies:
 Foremost seen in de-normalized data warehouse schemas,
 But also in OLTP systems
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Data Generation Requirements for DBMS 
Benchmarking
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1. Generate Petabytes of data

2. Generate data in parallel
 Across hundreds of physical nodes
 Across multiple CPU/cores

3. Able to generate complex data deterministically
 Various interdependencies
 Repeatable generation
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Methods of Data Generation
 Application specific
 Implementation overhead
 Limited adaptability
 Fast outdated

 Client simulation
 Graph based
 Very accurate (complex dependencies)
 Slow
 Limited repeatability

 Statistical distributions
 Based on probability
 Fast
 Repeatable
 Based on random numbers
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Random Number Generation
 Pseudo random numbers
 Fast 
 Repeatable

 Linear random number generation
 High quality random numbers
 rng(n) = lrng(lrng(…(lrng(seed))…))

 Parallel random number generation
 Fast random numbers
 Random hash *

 rng(n) = prng(seed+n)

x := 3935559000370003845 * i 
+ 2691343689449507681 (mod 2^64)

x := x xor ( x right−shift 21)
x := x xor ( x left−shift 37)
x := x xor ( x right−shift 4)
x := 4768777513237032717 * x (mod 2^64)
x := x xor ( x left−shift 20)
x := x xor ( x right−shift 41)
x := x xor ( x left−shift 5)
Return x

* Press et al. Numerical Recipes –The Art of Scientific Computing. 2007. Cambridge University Press.10



Deterministic Data Generation
 Exploits determinism in random number generation
 Seed determines random sequence
 Every value can be re-calculated

 Generic data generator
 Parallel Data Generation Framework (PDGF)
 XML specification defines schema
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Data Generators in PDGF
 Data generators are functions
 Domain: random values
 Codomain: data domain
 Same random number results in same value

 Examples
 Dictionary

 Random number % row count
 Number

 Random number % range + offset
 If multiple random numbers required

 Random number is seed

12



Seeding Strategy

 Hierarchical seeding strategy
 Schema Table  Column  Row  Generator
 Uses deterministic seeds
 Guarantees that n-th random number determines n-th value
 Even for large schemas all seeds can be cached

 Repeatable, deterministic generation
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Parallel Data Generation

 Each field can be computed independently
 Allows for a static scheduling approach
 Supports horizontal partitioning of tables
 Results in linear speedup
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TPC-H Generation Speed 
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 16 node HPC cluster 
 Each with 2 QuadCore, 2 HDDs, RAID 0
 Total of 32 processors, 128 cores, 256 threads, 32 HDDs

 TPC-H data set
 1 GB, 10 GB, 100 GB, 1TB – 1, 10, 16 nodes

 Linear speedup, linear scale-out
 Fast, parallel data generation on modern hardware
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Ongoing Example

 Represents a data warehouse scenario
 Simplification of TPC-H / star schema
 De-normalized dimensions

 Can grow to enormous sizes
 E.g. largest TPC-H result: 30,000 GBytes of raw data

 Multiple data dependencies
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Intra Row Dependency

 Dependency between fields of a single row
 Common for different representations of the same data
 Other Examples: 
 VAT  zip code of purchase
 City and state  zip code

 Functional dependency: {DateStamp} {Year,Quarter,Week}
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Intra Table Dependency

 Dependency between fields of different rows
 Simple example: surrogate key
 De-normalized fact table
 Merge of orders and lineitems (e.g. TPC-C, TPC-H)
 Multiple lineitems per order (between min and max)
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Intra Table Dependency II

 Time related intra table dependency
 History keeping dimension
 Stores the evolution of a dimension
 Incrementing surrogate key
 Multiple entries per CustID
 Monotonic increasing StartDate per CustID
 Matching EndDate and StartDate for successive entries per CustID
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Intra Table Dependency III

 Intra table dependency from multi-valued dependency 
(MVD)

 Usually poor schema design
 Possibly intended by benchmark designer

 Multiple addresses and phone numbers per customer
 MVDs: {CustID}{Address} and {CustID}{Telephone}
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Inter Table Dependency

 Dependency between fields of different tables
 Most common: referential integrity
 Foreign key must exist

 Redundant data
 Additional data structures: materialized views
 Aggregation of daily orders per customer
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Intra Row Dependency Generation
 Intra row dependency
 Affect only a single row

 Solution I
 Recalculate values

 Solution II
 Cache single row
 Faster
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Intra Table Dependency Generation
 Surrogate key
 Use row number

 Sorted data / time related dependency
 Serial generation
 Future work

 Multi valued dependency
 Generate multiple values at once
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Inter Table Dependency Generation

 Reference Generation
 SchemaTable  Column  Row  Row  Generator
 Randomly pick a referenced row
 Recalculate referenced value
 Supports various distributions

 Aggregation
 Recalculate multiple values
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Conclusions
 Requirements of modern benchmark data generation

 Large data, large systems, complex data

 Dependencies in relational data
 Intra row, intra table, inter table

 Generic data generation 
 Parallel Data Generation Framework
 Fast, parallel generation
 Support for intra row and inter table dependencies
 Some support for intra table dependencies
 Currently evaluated by the TPC

 Future Work
 Further dependencies
 Implement additional intra table dependencies
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Thank You!

 Questions?
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