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Motivation

 Testing performance of today’s data management systems 
is becoming increasingly difficult:

1. Data growth rate

2. System complexity

3. Data complexity
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Data Growth Rate
 Amount of data kept in today’s systems is growing 

exponentially:
 Companies retain more data for a longer period of time

 For legal purposes
 For accounting purposes
 To gain more insight into their business

 Social media sites collect personal information at a rapid pace * 

 Facebook data 2007 15 TBytes
 Facebook data 2010 700 TBytes

 It is all possible, because hardware is cheap and powerful 
 Hard drives, CPUs, etc.

*Thusoo et al. Hive - a petabyte scale data warehouse using Hadoop. ICDE 2010: 996-10054



System Complexity

 Dramatic increase in hardware used in TPC-H 
benchmarks between 2001 and 2011:
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Data Complexity
 Systems capture more sophisticated data
 Number of tables
 Number of columns
 Data dependencies

 For performance reasons systems store data with 
dependencies:
 Foremost seen in de-normalized data warehouse schemas,
 But also in OLTP systems
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Data Generation Requirements for DBMS 
Benchmarking
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1. Generate Petabytes of data

2. Generate data in parallel
 Across hundreds of physical nodes
 Across multiple CPU/cores

3. Able to generate complex data deterministically
 Various interdependencies
 Repeatable generation
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Methods of Data Generation
 Application specific
 Implementation overhead
 Limited adaptability
 Fast outdated

 Client simulation
 Graph based
 Very accurate (complex dependencies)
 Slow
 Limited repeatability

 Statistical distributions
 Based on probability
 Fast
 Repeatable
 Based on random numbers
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Random Number Generation
 Pseudo random numbers
 Fast 
 Repeatable

 Linear random number generation
 High quality random numbers
 rng(n) = lrng(lrng(…(lrng(seed))…))

 Parallel random number generation
 Fast random numbers
 Random hash *

 rng(n) = prng(seed+n)

x := 3935559000370003845 * i 
+ 2691343689449507681 (mod 2^64)

x := x xor ( x right−shift 21)
x := x xor ( x left−shift 37)
x := x xor ( x right−shift 4)
x := 4768777513237032717 * x (mod 2^64)
x := x xor ( x left−shift 20)
x := x xor ( x right−shift 41)
x := x xor ( x left−shift 5)
Return x

* Press et al. Numerical Recipes –The Art of Scientific Computing. 2007. Cambridge University Press.10



Deterministic Data Generation
 Exploits determinism in random number generation
 Seed determines random sequence
 Every value can be re-calculated

 Generic data generator
 Parallel Data Generation Framework (PDGF)
 XML specification defines schema
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Data Generators in PDGF
 Data generators are functions
 Domain: random values
 Codomain: data domain
 Same random number results in same value

 Examples
 Dictionary

 Random number % row count
 Number

 Random number % range + offset
 If multiple random numbers required

 Random number is seed
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Seeding Strategy

 Hierarchical seeding strategy
 Schema Table  Column  Row  Generator
 Uses deterministic seeds
 Guarantees that n-th random number determines n-th value
 Even for large schemas all seeds can be cached

 Repeatable, deterministic generation

13



Parallel Data Generation

 Each field can be computed independently
 Allows for a static scheduling approach
 Supports horizontal partitioning of tables
 Results in linear speedup
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TPC-H Generation Speed 
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 16 node HPC cluster 
 Each with 2 QuadCore, 2 HDDs, RAID 0
 Total of 32 processors, 128 cores, 256 threads, 32 HDDs

 TPC-H data set
 1 GB, 10 GB, 100 GB, 1TB – 1, 10, 16 nodes

 Linear speedup, linear scale-out
 Fast, parallel data generation on modern hardware
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Ongoing Example

 Represents a data warehouse scenario
 Simplification of TPC-H / star schema
 De-normalized dimensions

 Can grow to enormous sizes
 E.g. largest TPC-H result: 30,000 GBytes of raw data

 Multiple data dependencies
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Intra Row Dependency

 Dependency between fields of a single row
 Common for different representations of the same data
 Other Examples: 
 VAT  zip code of purchase
 City and state  zip code

 Functional dependency: {DateStamp} {Year,Quarter,Week}
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Intra Table Dependency

 Dependency between fields of different rows
 Simple example: surrogate key
 De-normalized fact table
 Merge of orders and lineitems (e.g. TPC-C, TPC-H)
 Multiple lineitems per order (between min and max)
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Intra Table Dependency II

 Time related intra table dependency
 History keeping dimension
 Stores the evolution of a dimension
 Incrementing surrogate key
 Multiple entries per CustID
 Monotonic increasing StartDate per CustID
 Matching EndDate and StartDate for successive entries per CustID
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Intra Table Dependency III

 Intra table dependency from multi-valued dependency 
(MVD)

 Usually poor schema design
 Possibly intended by benchmark designer

 Multiple addresses and phone numbers per customer
 MVDs: {CustID}{Address} and {CustID}{Telephone}
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Inter Table Dependency

 Dependency between fields of different tables
 Most common: referential integrity
 Foreign key must exist

 Redundant data
 Additional data structures: materialized views
 Aggregation of daily orders per customer
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Intra Row Dependency Generation
 Intra row dependency
 Affect only a single row

 Solution I
 Recalculate values

 Solution II
 Cache single row
 Faster
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Intra Table Dependency Generation
 Surrogate key
 Use row number

 Sorted data / time related dependency
 Serial generation
 Future work

 Multi valued dependency
 Generate multiple values at once
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Inter Table Dependency Generation

 Reference Generation
 SchemaTable  Column  Row  Row  Generator
 Randomly pick a referenced row
 Recalculate referenced value
 Supports various distributions

 Aggregation
 Recalculate multiple values
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Conclusions
 Requirements of modern benchmark data generation

 Large data, large systems, complex data

 Dependencies in relational data
 Intra row, intra table, inter table

 Generic data generation 
 Parallel Data Generation Framework
 Fast, parallel generation
 Support for intra row and inter table dependencies
 Some support for intra table dependencies
 Currently evaluated by the TPC

 Future Work
 Further dependencies
 Implement additional intra table dependencies
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Thank You!

 Questions?
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