
Parallel Data Generation for Performance
Analysis of Large, Complex RDBMS

Tilmann Rabl and Meikel Poess
Presented by Mohammad Sadoghi

Agenda
 Motivation

 Data generation for DBMS benchmarking

 Classification of data dependencies

 Generation of data dependencies

 Conclusions

2

Motivation

 Testing performance of today’s data management systems
is becoming increasingly difficult:

1. Data growth rate

2. System complexity

3. Data complexity

3

Data Growth Rate
 Amount of data kept in today’s systems is growing

exponentially:
 Companies retain more data for a longer period of time

 For legal purposes
 For accounting purposes
 To gain more insight into their business

 Social media sites collect personal information at a rapid pace *

 Facebook data 2007 15 TBytes
 Facebook data 2010 700 TBytes

 It is all possible, because hardware is cheap and powerful
 Hard drives, CPUs, etc.

*Thusoo et al. Hive - a petabyte scale data warehouse using Hadoop. ICDE 2010: 996-10054

System Complexity

 Dramatic increase in hardware used in TPC-H
benchmarks between 2001 and 2011:

5

1

64

0

20

40

60

80

100

2001 2011

Number of Nodes

64x

128

4320

0

1000

2000

3000

4000

5000

2001 2011

Main Memory [GBytes]

33.8x

64

720

0

200

400

600

800

1000

2001 2011

Number of Cores

11.3x

Data Complexity
 Systems capture more sophisticated data
 Number of tables
 Number of columns
 Data dependencies

 For performance reasons systems store data with
dependencies:
 Foremost seen in de-normalized data warehouse schemas,
 But also in OLTP systems

6

Data Generation Requirements for DBMS
Benchmarking

7

1. Generate Petabytes of data

2. Generate data in parallel
 Across hundreds of physical nodes
 Across multiple CPU/cores

3. Able to generate complex data deterministically
 Various interdependencies
 Repeatable generation

Agenda
 Motivation

 Data generation for DBMS benchmarking

 Classification of data dependencies

 Generation of data dependencies

 Conclusions

8

Methods of Data Generation
 Application specific
 Implementation overhead
 Limited adaptability
 Fast outdated

 Client simulation
 Graph based
 Very accurate (complex dependencies)
 Slow
 Limited repeatability

 Statistical distributions
 Based on probability
 Fast
 Repeatable
 Based on random numbers

9

Random Number Generation
 Pseudo random numbers
 Fast
 Repeatable

 Linear random number generation
 High quality random numbers
 rng(n) = lrng(lrng(…(lrng(seed))…))

 Parallel random number generation
 Fast random numbers
 Random hash *

 rng(n) = prng(seed+n)

x := 3935559000370003845 * i
+ 2691343689449507681 (mod 2^64)

x := x xor (x right−shift 21)
x := x xor (x left−shift 37)
x := x xor (x right−shift 4)
x := 4768777513237032717 * x (mod 2^64)
x := x xor (x left−shift 20)
x := x xor (x right−shift 41)
x := x xor (x left−shift 5)
Return x

* Press et al. Numerical Recipes –The Art of Scientific Computing. 2007. Cambridge University Press.10

Deterministic Data Generation
 Exploits determinism in random number generation
 Seed determines random sequence
 Every value can be re-calculated

 Generic data generator
 Parallel Data Generation Framework (PDGF)
 XML specification defines schema

11

Data Generators in PDGF
 Data generators are functions
 Domain: random values
 Codomain: data domain
 Same random number results in same value

 Examples
 Dictionary

 Random number % row count
 Number

 Random number % range + offset
 If multiple random numbers required

 Random number is seed

12

Seeding Strategy

 Hierarchical seeding strategy
 Schema Table Column Row Generator
 Uses deterministic seeds
 Guarantees that n-th random number determines n-th value
 Even for large schemas all seeds can be cached

 Repeatable, deterministic generation

13

Parallel Data Generation

 Each field can be computed independently
 Allows for a static scheduling approach
 Supports horizontal partitioning of tables
 Results in linear speedup

14

TPC-H Generation Speed

15

 16 node HPC cluster
 Each with 2 QuadCore, 2 HDDs, RAID 0
 Total of 32 processors, 128 cores, 256 threads, 32 HDDs

 TPC-H data set
 1 GB, 10 GB, 100 GB, 1TB – 1, 10, 16 nodes

 Linear speedup, linear scale-out
 Fast, parallel data generation on modern hardware

Agenda
 Motivation

 Data generation for DBMS enchmarking

 Classification of data dependencies

 Generation of data dependencies

 Conclusions

16

Ongoing Example

 Represents a data warehouse scenario
 Simplification of TPC-H / star schema
 De-normalized dimensions

 Can grow to enormous sizes
 E.g. largest TPC-H result: 30,000 GBytes of raw data

 Multiple data dependencies

17

Intra Row Dependency

 Dependency between fields of a single row
 Common for different representations of the same data
 Other Examples:
 VAT zip code of purchase
 City and state zip code

 Functional dependency: {DateStamp} {Year,Quarter,Week}

18

Intra Table Dependency

 Dependency between fields of different rows
 Simple example: surrogate key
 De-normalized fact table
 Merge of orders and lineitems (e.g. TPC-C, TPC-H)
 Multiple lineitems per order (between min and max)

19

Intra Table Dependency II

 Time related intra table dependency
 History keeping dimension
 Stores the evolution of a dimension
 Incrementing surrogate key
 Multiple entries per CustID
 Monotonic increasing StartDate per CustID
 Matching EndDate and StartDate for successive entries per CustID

20

Intra Table Dependency III

 Intra table dependency from multi-valued dependency
(MVD)

 Usually poor schema design
 Possibly intended by benchmark designer

 Multiple addresses and phone numbers per customer
 MVDs: {CustID}{Address} and {CustID}{Telephone}

21

Inter Table Dependency

 Dependency between fields of different tables
 Most common: referential integrity
 Foreign key must exist

 Redundant data
 Additional data structures: materialized views
 Aggregation of daily orders per customer

22

Agenda
 Motivation

 Data generation for DBMS benchmarking

 Classification of data dependencies

 Generation of data dependencies

 Conclusions

23

Intra Row Dependency Generation
 Intra row dependency
 Affect only a single row

 Solution I
 Recalculate values

 Solution II
 Cache single row
 Faster

24

Intra Table Dependency Generation
 Surrogate key
 Use row number

 Sorted data / time related dependency
 Serial generation
 Future work

 Multi valued dependency
 Generate multiple values at once

25

Inter Table Dependency Generation

 Reference Generation
 SchemaTable Column Row Row Generator
 Randomly pick a referenced row
 Recalculate referenced value
 Supports various distributions

 Aggregation
 Recalculate multiple values

26

Agenda
 Motivation

 Data generation for DBMS benchmarking

 Classification of data dependencies

 Generation of data dependencies

 Conclusions

27

Conclusions
 Requirements of modern benchmark data generation

 Large data, large systems, complex data

 Dependencies in relational data
 Intra row, intra table, inter table

 Generic data generation
 Parallel Data Generation Framework
 Fast, parallel generation
 Support for intra row and inter table dependencies
 Some support for intra table dependencies
 Currently evaluated by the TPC

 Future Work
 Further dependencies
 Implement additional intra table dependencies

28

Thank You!

 Questions?

29

	Parallel Data Generation for Performance Analysis of Large, Complex RDBMS
	Agenda
	Motivation
	Data Growth Rate
	System Complexity
	Data Complexity
	Data Generation Requirements for DBMS Benchmarking
	Agenda
	Methods of Data Generation
	Random Number Generation
	Deterministic Data Generation
	Data Generators in PDGF
	Seeding Strategy
	Parallel Data Generation
	TPC-H Generation Speed
	Agenda
	Ongoing Example
	Intra Row Dependency
	Intra Table Dependency
	Intra Table Dependency II
	Intra Table Dependency III
	Inter Table Dependency
	Agenda
	Intra Row Dependency Generation
	Intra Table Dependency Generation
	Inter Table Dependency Generation
	Agenda
	Conclusions
	Thank You!

