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Abstract. Because digital images are not meaningful by themselves, images are
often coupled with some descriptive or qualitative data in an image database. These
data also divided into syntactic (color, shape, and texture) and semantic (meaningful
real word object or concept) features, necessitate novel querying techniques. Most
image systems and prototypes have focussed on similarity searches based upon the
syntactic features. In the DISIMA system, we proposed an object-oriented image
data model that introduces two main types: image and salient object. We further
defined operations on the images and the salient objects as new joins. This approach
is necessary in order to envision a declarative query language for images. This
paper summarizes the querying facilities implemented for the DISIMA system and
gives their theoretical foundation: the data model and the complementary algebraic
operations, the textual query language (MOQL) and its visual counterpart (Visual-
MOQL) based on an image calculus. Both languages are declarative and allow the
combination of semantic and similarity queries.

Keywords: multimedia databases, image databases, image content modelling, im-
age content-based querying

1. Introduction

Multimedia data, especially images, have become ubiquitous. Com-
puter users around the world are sharing that data on a daily basis. As
is the case for all multimedia data, the digital image data does not con-
vey any meaningful information about the image. Any interpretation of
the image data needs to be modelled and stored separately. The term
meta-data is commonly used to refer to the data, other than the “raw”
multimedia data, that help describe or understand the multimedia data.
For images, these data can be divided into syntactic features, which
can denote the visual properties (e.g. color, texture and shape) and
semantic features, which describe the content of the images in terms
of real world objects or the semantic concepts they convey. Because of
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their size and lack of inherent semantics, raw images are not directly
queried. Instead, queries are based on the syntactic and semantic meta-
data. In the DISIMA System (a research prototype developed at the
University of Alberta, Canada from 1995 to 2000) the content of an
image is described by means of salient objects (regions of interest)
organized in an hierarchical way within the object-oriented paradigm.
Semantic queries in DISIMA are based on the salient objects and their
properties.

Visual features provide an alternative for image database querying
and have been extensively studied for similarity searches (Del Bimbo,
1999). The visual features are extracted and represented as points in a
multi-dimensional vector space. Multi-dimensional access methods are
used to support efficient image searches (Stehling et al., 2000), (Korn
et al., 1996), (Faloutsos et al., 1994). As low-level features (color, shape
and texture) do not intrinsically carry any semantics, heuristics are
often used to try to infer semantics to make the search more accurate.
Shapes are combined with spatial relationships in (Del Bimbo and
Vicario, 1998); color, shape and texture are combined in (Bartolini
et al., 2000); whereas (Leung and Ng, 1998) superimposes a fixed grid
on the image and combines the color properties of image blocks with
the relative positions of the blocks. Another approach in capturing
more semantics is image classification based on the same low-level fea-
tures prior to similarity searches. For example, (Szummer and Picard,
1998) classify images into indoor and outdoor scenes. In (Bartolini
et al., 2001) relevance feedback is used to learn image similarities and
semantics in order to improve the similarity searches.

In general, low-level feature approaches to image retrieval are re-
stricted, as it is difficult to capture high level semantics with low-level
features. For better results, image DBMSs should include a combination
of syntactic feature-based searching and searches based on semantics.
This means that the system has to support a rich model that captures
both the semantic and the syntactic features of images, a powerful
declarative query language that can express both exact match and
similarity queries and specific indexes to speed up the query processing.

This paper presents the querying functionality of the DISIMA image
database system and is an extended version of (Oria et al., 2001).
Section 2 discusses the modelling of semantic and syntactic features
of images in DISIMA. Section 3 describes predicates defined on images
and salient objects, which support the new algebraic operators used in
querying. Section 4 presents the algebraic operators and their use in
the MOQL query language. It also defines the calculus based on the
image and salient object predicates. The calculus is the foundation of
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the visual query language VisualMOQL. Finally, Section 5 concludes
the paper.

2. Modelling Images and Salient Objects

The DISIMA project involved an extensive study of the requirements of
a next generation image DBMS (Oria et al., 1997). This Section starts
with an overview of the model, then presents in detail the modelling of
the salient objects and the images.

(represented_by)
(represented_by)

(correspond_to)

inheritance

other relationships

belongs tocategory (class)

instance

Salient Object
(logical)

Salient Object
(physical)

Image

Image 
Representation

(contains)

Image Block Salient Object Block

Salient Object
Representation

Figure 1. An Overview of the DISIMA Model

2.1. The DISIMA Model Overview

A data model is defined as a collection of mathematically well-defined
concepts that express both static and dynamic properties of data inten-
sive applications. The DISIMA model introduces two main concepts:
Image and Salient Objects and operators to manipulate them.

A layered architecture was developed to define the image database
model. The first layer is an object-oriented model that hosts the DIS-
IMA model. The object-oriented model takes care of the classification
of images and salient objects since the DISIMA model itself is composed
of the image layer and the salient object layer (Figure 1). All the entities
types in the DISIMA model are implemented as classes. The DISIMA
type system provides a root type (or class) for each layer of the model:
Image, Image Representation, LSO, PSO and PSO Representation. By
means of schema specifications, Image and LSO are subtyped by the
application developer to define application-specific types. PSO Repre-
sentation has two subclasses: Raster Representation, which is similar
to Image Representation and Vector Representation, which represents
the geometry of physical salient objects since the properties of an object
are implemented as behaviors, we use the two words interchangeably.

As shown in Figure 2, the two central entities in the DISIMA model
are the images and the physical salient objects (PSOs). All the others
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Figure 2. The DISIMA type system overview.

can be seen as properties of either images or physical salient objects.
The multi-scale color histogram describes the color distribution in the
image. In addition, dominant colors and textures in the image are
selected and stored as features of physical salient objects. The MBB
(Minimum Bounding Box) defines the minimum bounding box of the
geometric object representing the physical salient object; the Geometric
Object class defines its actual shape; the Texturegroup represents the
set of textures found in the PSO; the Colorgroup gives a set of dominant
colors in the PSO. Details on these objects are given below.

2.2. Modelling Salient Objects

A salient object is an object of interest in an image. Modelling image
content by means of salient objects involves two main issues: (i) how
to detect and recognize the salient objects and (ii) how to represent,
index and query images through salient objects. The recognition of
the physical salient objects is part of an active research area of Com-
puter Vision, which is out of the scope of this paper. The results and
challenges of this research are well summarized in (Jain et al., 2000):
“In spite of almost fifty years of research, design of a general-purpose
machine pattern recognizer remains an elusive goal....The best pattern
recognizers in most instances are humans, yet we do not understand
how humans recognize patterns”. These are certainly the main reasons
behind the fact that the process of image understanding is manual, or
semi-automatic in the best cases. The work presented in this paper is
more related to the second issue of image representation and querying.
In the DISIMA project we first use a well-known edge detection tech-
nique, combined with other detection techniques, to draw contours of
the isolated objects. The semantics of the detected objects are provided
by manually linking them to a semantic object.
2.2.1. Salient Objects: Definition
A salient object is an object of interest in an image. In addition to
generic semantic information, an object found in an image has some
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specific properties linked to that image. To take into account this
distinction, DISIMA introduces two notions of salient objects: Logical
Salient Object (LSO), which refers to a semantic object in an abstract
sense and Physical Salient Object, which represents a semantic object
as it appears in a particular image.

DEFINITION 1.

− A physical salient object (PSO) is a region of an image, that is,
a geometric object (without any semantics) in a space (defined by
an image) with properties like shape, color, and texture.

− A logical salient object (LSO) is the interpretation of a region. It
is a meaningful object that is used to give semantics to a physical
salient object.

2.2.2. Modelling the Geometric Shapes of Salient Objects
The object-oriented modelling of geometric objects potentially conflicts
with the their mathematical definitions. The problem has already been
addressed, but without a general solution that integrates code reuse
at the data structure and the method level. We provided a more gen-
eral solution to the shape hierarchy design issue (Oria et al., 1999a),
following the model presented in (Leontiev et al., 1998).

Mathematically, a triangle and a rectangle are polygons, and a square
is a special kind of rectangle. Accordingly, the class Triangle should
be a subclass of the class Polygon. In the same way, the class Square
should be a subclass of Rectangle which, in turn, should be defined as a
subclass of Polygon. But from the point of view of data representation,
a shape subclass might actually require fewer data members than its
superclass, which leads to a conflict. For example, a polygon minimally
requires a list of n consecutive points for its description, whereas a
rectangle (n=4) can be defined by just three points and a square by
just two points, if we take advantage of their symmetry.

The solution we proposed is based on the object model in (Leontiev
et al., 1998) with a total separation between interface, implementation,
and representation. We use the term interface type to refer to real-world
entities and their programmatic interface. The term implementation
type refers to the internal data representation. Interface and imple-
mentation types form two separate type hierarchies. Class or concrete
type refers to the creation of instances and extent maintenance. Each
of these types is then implemented by a C++ class. Each concrete
type inherits from an interface type and an implementation type. We
use three different kinds of C++ classes to simulate the notions of
interface type, concrete type and implementation type defined in our
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model. The interface types, whose names are not prefixed, declare the
interface visible to the user; these types are usually abstract with pure
virtual functions. An exception is the concrete interface type Compos-
ite. Some of the classes in this interface type hierarchy, e.g., Atomic,
1D, and 2D, are termed abstract type, since only their subtypes have
a create method. The I prefixed classes are the implementation types;
they contain the actual data members. The C prefixed classes represent
concrete types; each of these concrete classes is publicly derived from
its interface type and privately derived from its implementation type.

Figure 3 shows the final design of the geometric object class hier-
archy. All the concrete types are associated with an implementation
type and an interface type. Abstract interface types do not have any
shallow-extent; they are not associated with any concrete type.
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Figure 3. The Final Geometric Object Hierarchy

2.3. Modelling Images

The image object encapsulates all the properties of an image. This
consists of a unique identifier, a set of representations, a set of general
descriptors (including color, texture, and other syntactic features), and
image content (physical salient objects contained in the image together
with their associated logical salient objects). The distinction between
logical and physical salient objects (referred to as semantic indepen-
dence in (Oria et al., 1997))offers more flexibility and is introduced to
handle both general and specific properties of salient objects.

2.3.1. Image: Definition
DEFINITION 2. Image Content: Let P be the domain of physical
salient objects and L be the set of all logical salient objects. The content
of an image i is defined by a pair Cont(i) =< Pi, s > where:

- Pi is a set of physical salient objects of an image i (Pi ⊆ P )
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- s : Pi −→ L maps each physical salient object to a logical salient
object.

Alternatively, the content of an image is defined as a set of ordered
pairs < pso, lso > where pso ∈ P is a region of the image and lso ∈ L
is a logical salient object.

An image is then defined as follows:

DEFINITION 3. Image: An image i is defined by a quadruple <
id,Rep,Cont, Desc > where:
- id is the unique identifier of the image;
- Rep is a set of representations of the raw image in a format such as
GIF, JPEG, etc;
- Cont is the content of the image i as defined earlier;
- Desc is a set of descriptive alpha-numeric data associated with i.

Color, texture and other syntactic features characterizing the whole
image are part of the Desc.

2.3.2. Image Color Representation
Colors are one of the visual features that people immediately perceive
when looking at an image. In addition to describing the main colors
in each physical salient object, the colors in the image can be repre-
sented as a color histogram. An image color histogram captures the
color distribution of the image pixels and can be defined as a discrete
function h(ck) = nk, where ck is the k-th color value and nk is the
number of pixels in the image with that color. In order to compare
color histograms of images with different sizes, color histograms are
often normalized as H(ck) = nk

n where n is the total number of pixels
in the image. For more accuracy in color similarity searches, a 64-
color histogram is computed for the entire image, then the image is
recursively decomposed into four quadrants with a color histogram
computed for each quadrant. Hence, the image color properties are
represented by a quadtree with a predetermined child order (Figure
4). The root stores the color histogram of the entire image while the
nodes store the color histograms of their respective quadrants. The
image color structure is referred to as a multi-scale color histogram.
The multi-scale color histogram has 3 levels (1 to 3), as experimental
results did not show any improvement beyond level 3.

3. Predicates on Images and Salient Objects

Predicates are used to define conditions in queries. They can be directly
used in calculus-based queries to define formulas or in the definition of

Newkluw_MIS.tex; 25/05/2003; 13:31; p.7



8 Oria et al.

0

1

2

3

4

6

13

14

15

16

17

18

19

2012

9 11

5

10

7

8

0

5 6 7 8 9 10 13 14 17 18 19 20

1 2 3

1211 15 16

4

(a) N order of image blocks

(b) quadtree with predetermined children node order

Figure 4. A quadtree stores color histograms of image blocks

algebraic operators. Since the classical predicates {=, <,≤, >,≥} are
not sufficient for images, we defined a new set of predicates to be used
on images and salient objects.

3.1. Contains Predicate

The objects found in images are physical salient objects. So we defined
a predicate (contains) to check if an image contains a given physical
salient object. But since it is easier for users to define queries on se-
mantics and other visual descriptors than on physical salient objects,
we generalized the contains predicate to work on logical salient objects,
colors, textures and shapes.

DEFINITION 4. The Contains Predicate:

− Contains predicate and physical salient objects: Let i be an
image, p a physical salient object and pso a behavior that re-
turns the set of physical salient objects contained in an image
contains(i, p) ⇐⇒ p ∈ i.pso.

− Generalized Contains predicate: Let i be an image, o an object
with a behavior pso that returns the set of physical salient objects
associated with o: contains(i, o) ⇐⇒ ∃p ∈ o.pso ∧ p ∈ i.pso.

The object o can be a logical salient object, a color or a shape. Both
o.pso and i.pso are sets of PSOs (an image can be composed of more
than one physical salient object, and a logical salient object can be
found in more than one image). An image contains a logical salient
object if it is associated with a physical salient object that is contained
in the image. The same scheme can be applied to objects of MBB, Col-
orgroup, Texturegroup and Geometric object (Figure 2) as they are all
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associated with physical salient objects through a pso behavior. In this
case, queries like “find images with a red object” or “find images with
an object of a rectangular shape” can easily be answered by combining
a selection condition in the respective classes and a contains condition.

3.2. Shape Similarity Predicates

The geometric model stores any given physical salient object shape in
the extent of its most specific class. Shapes can be compared by their
types or their appearances, their boundaries or their pixel distributions.

DEFINITION 5. The Shape Type Similarity Predicate:
Let type be the behavior that returns the type of a shape. Two shapes
s and t are type similar if s.type = t.type. In other words:
shape type similar(s, t) ⇐⇒ s.type = t.type.

The shape type similar(s, t) predicate can also be used to check wether
a given shape is of a certain type: shape type similar(s, rectangle) is
true if s is a rectangle.

When comparing shapes, there are two main approaches: region-
based similarity and contour-based similarity (Bober, 2001). Region-
based similarity checks the similarity in terms of the spatial distribution
of pixels in the regions, whereas contour-based similarity concerns the
contours of the objects. We chose the contour-based turning angle algo-
rithm (Arkin et al., 1991) because of its orientation invariance. Basically
the turning angle algorithm describes a shape from a starting point
on the perimeter and, following a counterclockwise direction, it moves
around the perimeter recording the angles it encounters. By plotting the
cumulative angles on the horizontal axis of a 2-dimensional space and
the distance traversed on the vertical axis, a step-like graph is obtained.
In order to compare shapes of different sizes, the perimeter is normal-
ized to 1. A distance dshape is then defined on the plots. The turning
angle algorithm, however, cannot be applied to circles and ellipses, for
which we have developed some formulas(circle: (x−h)2 +(y−k)2 = r2

where (h, k) is the center and r is the radius; ellipse: (x−h)2

a2 + (y−k)2

b2
= 1,

where (h, k) is the center, a is the major and b is the minor) that can
be used for similarity comparisons.

DEFINITION 6. The Shape Similarity Predicate:
Given a shape similarity metric dshape and a similarity threshold
epsilonshape, two shapes s and t are similar with respect to dshape if
dshape(s, t) ≤ εshape. In other words:
shape similar(s, t, εshape) ⇐⇒ dshape(s, t) ≤ εshape.
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Note that the shape similar can be generalized to include shape type
similar. For example, shape similar(s, t, εshape) can have the seman-
tics of shape type similar if the parameter εshape is missing.

3.3. Color Similarity Metric and Predicates

Similarity searches are often based on some metrics. For color similarity
in DISIMA, we defined two distance metrics: one on the multi-scale
color histograms and another one on the image average colors. The
second metric is used mainly for the 3DH index structure (Lin et al.,
2001) to filter the images before applying the distance metric on multi-
scale color histograms.

− Distance metric on multi-scale color histograms:
In this work, we used the weighted Euclidean distance function
defined as (Hafner et al., 1995):

d2
hist(X,Y ) = ZT AZ

where Z = (X − Y ), ZT denotes the transpose of Z, and A =
[aij ] is a similarity matrix whose elements aij denote similarity
between colors i and j. The distance between two multi-scale color
histograms at a level l (1 ≤ l ≤ 3) is defined as the average of the
distances on respective quadrants: dl = 1

4l−1

∑4l−1

i=1 (di) where di is
the distance on the ith color histogram.

− Similarity metric on average colors: The average color does not
need to be explicitly stored, as it can be computed from the color
histogram at the first level. Let C = [c1c2 . . . c64] be a 3×64 matrix
representing the 64 colors used to define the color histograms with
ci = [αi, βi, γi] where α, β and γ are the magnitudes along the
3 color dimensions (R,G,B). Given two normalized n-dimensional
color histograms at level 1, X and Y , the 3 × 1 average color
vector for each is: Xave = CX, Yave = CY . The squared average
color distance is defined by d2

ave = (Xave − Yave)T (Xave − Yave) =
(X − Y )T CT C(X − Y ).

While the average color comparisons are not as accurate as one between
full n-dimensional histograms, they are much faster. Moreover, the im-
ages retrieved by average color comparisons are guaranteed to include
all images that should be retrieved by color histogram comparisons, as
proven in (Hafner et al., 1995). Accordingly, for any range query of the
form dl1 ≤ ε, dave ≤ f(ε) (f depends on dl1 which is the distance at
level 1) can be used to retrieve images quickly and without misses. The
expensive measure dhist will then have to be applied only to the filtered
set of images (Lin et al., 2001).
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DEFINITION 7. The Color Similarity Predicate:
Given 2 color representations (c1, c2) and a color distance metric dcolor.
The color representations c1 and c2 are similar with respect to dcolor

if dcolor(c1, c2) ≤ εcolor. In other words: color similar(c1, c2, εcolor) ⇐⇒
dcolor(c1, c2) ≤ εcolor.

3.4. Spatial Predicates

The spatial model for DISIMA is based on Allen’s temporal logic (Allen,
1983) that gives a temporal interval algebra for representing and reason-
ing about temporal relations between events represented as intervals.
The elements of the algebra are sets of seven basic relations (before,
meets, overlaps, during, starts, finishes and equal), which can hold be-
tween two intervals, and their inverse relations. The temporal interval
algebra can be seen as topological or directional relations in one dimen-
sional space. This Algebra can be enhanced by extension into multi-
dimensional space. Based on that observation and by combining the
interval relationships on the two axes defined on an image, we defined
12 directional relations classified into the following three categories:
strict directional relations (north, south, west, and east), mixed direc-
tional relations (north-east, south-east, north-west, and south-west),
and positional relations (above, below, left, and right). In addition, we
defined 6 topological relationships (equal, inside, cover, inside touch
and disjoint). The definitions of these relations in terms of Allen’s
temporal algebra can be found in (Li et al., 1996). Defining the spatial
relations on the intervals obtained from projections of the objects onto
the axes is equivalent to defining them on the minimum bounding boxes
of the objects. Since some topological relations can be true on the
minimum bounding boxes and false for the objects, a refinement phase
is necessary to get rid of the false positives.

4. Querying Images

Two query languages MOQL (Li et al., 1997) and VisualMOQL (Oria
et al., 1999b) were defined for DISIMA. MOQL is based on an algebra
defined using the predicates presented above. VisualMOQL is based on
an object calculus defined with the same predicates.

4.1. DISIMA Algebra and MOQL

The new operators are defined as joins: semantic join, similarity join
and spatial join.
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4.1.1. Semantic Join
DEFINITION 8. Semantic Join (physical salient objects):
Given a set of Images I and a set of physical salient objects P the
semantic join between I and P , I 1contains P , defines the elements of
I × P where contains(i, p).

The semantics of the contains predicate was extended to work on ob-
jects with a pso behavior that returns the physical salient objects with
which they are associated. These objects are of type logical salient
object (LSO), MBB, Colorgroup, Texturegroup and Geometric object.
All these objects express properties of physical salient objects. They
are more accessible to users than the PSO and can be used to find
desired physical salient objects. Because of that, we refer to them as
semantic objects.

DEFINITION 9. Generalized Semantic Join:
Let S be a set of semantic objects of the same type with a behavior
pso that returns, for a semantic object, the physical salient objects it
describes. The semantic join between an image class extent I and the
semantic object class extent S, denoted by I 1contains S, defines the
elements of I × S where for i ∈ I, and s ∈ S, contains(i, s).

As defined, the semantic join can be useful in finding the images that
contain some salient object as well as the salient objects contained in
an image. It is used not only to query images that contain some logical
salient objects but also to query images that contain a physical salient
object of a specific shape (rectangle, polygon, etc.), color or texture.
Examples of queries that can be expressed using the semantic join are
“list the salient objects of a given image”, “list the images that contain
a person”, “for each image, list the salient objects it contains”, “list
the images that contain an object of a rectangular shape”.

Images and physical salient objects have properties on which some
distance metrics are commonly defined. These properties are color,
texture and geometric shape. The image properties can directly be
used to find desired images while the metric properties on physical
salient objects are used to select some physical salient objects before a
semantic join.

4.1.2. Similarity Joins
Similarity joins are join operations that involve metric data types and
operators. Examples include queries like “find all scenery images that
are similar (with regard to color) to images with animals”, “find all
images of scenery that look like a given image”, “find images that
contain an object with a shape similar to a given shape”, “find images
that contain an object with a color similar to a given color”.
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DEFINITION 10. Similarity Join:
Given a similarity predicate similar and a threshold ε, the similarity
join between two sets R and S of images or physical salient objects,
denoted by R 1similar(r.i,s.j,ε) S for r ∈ R and s ∈ S, is the set of
elements from R× S where the behaviors i defined on the elements of
R and j on the elements of S return some compatible metric data type
T and similar(r.i, s.j) (the behaviors i and j can be the behaviors that
return color, texture or shape).

A shape in one class can be similar to shapes from another class. In
the example given in Figure 5, the the polygonal shape (c) is close to the
shape (a). From the geometric shape model (Figure 2), we defined three
groups of shape: Ellipse, Polyline and Polygon. The Geometric Object
class supports three types of similarity metrics: full-group, class, and
sub-group The ellipse group includes the Ellipse and Circle classes. The
polyline group includes the Polyline and Segment classes. The Polygon,
Rectangle, Square, and Triangle classes belong to the polygon group.

Given a shape similarity query, we must decide which extent to use
(shallow or deep extent). Instead of asking for another parameter, the
decision is made on the basis of the similarity threshold in the query
and the presence or absence of a shape. With a shape as parameter, if
the similarity threshold is set to 1, a class match is performed; other-
wise, a full-group match is performed. When the parameter of a shape
similarity query is a shape type rather than an instance of a shape type,
a subclass match is performed.

4.1.3. Spatial Join
The shapes are defined on physical salient objects and a spatial join
can be use to select them.

DEFINITION 11. Spatial Join:
The spatial join of the extent of two sets R and S, denoted by R 1r.iθs.j

S, is the set of elements from R × S where the behaviors i defined on
the elements of R and j on the elements of S return some spatial data
type, θ is a binary spatial predicate, and R.i stands in relation θ to S.j
(θ is a spatial operator like north, west north-east, intersect, etc.).

The above spatial join definition is adapted from the one given in
(Günther, 1993) in the relational context. In DISIMA, the spatial join
is used for spatial relationships between salient objects, PSOs of a given
image, considered within a 2-dimensional space.
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(a) (b) (c)

Figure 5. Shape similarity.

4.1.4. DISIMA Algebra and MOQL
As in relational and object-oriented database systems, the join oper-
ators introduced are implemented in the where clause of the query
language. The DISIMA query language is MOQL (Multimedia Object
Query Language), a declarative text-based multimedia query language
(Li et al., 1997), which is an extension of the standard OQL lan-
guage (Cattell et al., 1997). MOQL is a general multimedia query
language but this work uses only the clauses related to images. The
extensions introduced to OQL by MOQL are in the where clause, in
the form of four new predicate expressions: spatial expression, tempo-
ral expression, contains predicate, and similarity expression. The spa-
tial expression is a spatial extension which includes spatial objects,
spatial functions, and spatial predicates. The contains predicate is de-
fined as: contains predicate ::= image object contains salientObject.
The contains predicate is used to express semantic join conditions
and the similarity predicate expresses similarity

THEOREM 1. The DISIMA Algebra is equivalent to MOQL.

Proof (sketch): To prove this we need to prove that the DISIMA
Algebra is complete with respect to MOQL and vice-versa. Let us
denote by MD, the DISIMA model, LA the set of queries that can
be expressed with the DISIMA algebraic language and by LM the
set of queries expressed in MOQL using the predicates introduced.
Given db, a database in MD and q a query expressed in MOQL, LA is
complete with respect to LM is formally expressed as ∀db ∈ MD ∀q′ ∈
LA ∃q ∈ LM q(db) = q′(db) and LA is complete with respect LM ,
means ∀db ∈ MD ∀q ∈ LM ∃q′ ∈ LA q′(db) = q(db). This is always the
case as the new clauses introduced in the definition of MOQL express
conditions based on the predicates used in the definition of the DISIMA
algebra.
4.2. Image Calculus and VisualMOQL

As indicated earlier, the DISIMA model is an object-oriented one. Con-
sequently, in the image calculus that we have defined, atoms refer to
objects or class extents. The new classes we introduced for the DIS-
IMA model are Image, LSO (Logical Salient Object), PSO (physical
Salient Object), Geometry Object (shape), Color and Texture. In ad-
dition to the classic predicates (= [value equality], == [object identity],

Newkluw_MIS.tex; 25/05/2003; 13:31; p.14



Querying Images in the DISIMA DBMS 15

<,≤, >,≥) the predicates we defined can be used. An image query can
be expressed as: {m|m ∈ ImageΦ(m)} where Φ is a formula without
a free variable. A query like “Give me all the images containing a
shape similar to a given shape r with similarity threshold (ε)” can be
expressed as follows:
{m|m ∈ Image ∃o ∈ PSO,∃s ∈ Geometry Object s == shape(o) ∧
shape similar(s, r, ε) ∧ contains(m, s)}

This calculus represents the foundation of VisualMOQL (Oria et al.,
1999b), the visual counterpart of MOQL. VisualMOQL provides an
easier way to express queries by means of visual objects. It allows
users to define complex queries by composing several subqueries. For
example, a query Q “Find images with 2 people next to each other
without any building, or images with buildings without people” can be
decomposed into 2 sub-queries Q1: “Find images with 2 people next to
each other without any building” and Q2: “ Find images with buildings
without people”1. The query Q = Q1 ∨Q2

In general the user defines subqueries that are combined in the query
canvas to form a compound query. A subquery can be a negative for-
mula of the form ¬Φ or a positive formula of the form Φ. The semantics
of VisualMOQL is based on the object calculus as follows:

− Subquery Φ(x) = {∃i ∈ I ∃s1 ∈ S1...∃sk ∈ Sk|cond(i) ∧ cond(s1...
sk) ∧ contains(i, s1) ∧ ... ∧ contains(i, sk) ∧ i == x} where:

• I is an image class (i.e., Image or a subclass of Image) called
the range of Φ, range(Φ) = I.

• cond(i) expresses some selective conditions on the image prop-
erties.

• cond(s1...sk) expresses some selective conditions on salient
object properties (exact or similarity matches and and spatial
relationships).

− Composite subquery: If Φ1 and Φ2 are subqueries then:

• ¬Φ1 is a subquery; range(Φ1) = range(¬Φ1)

• Φ1 ∧ Φ2 is a subquery;
range(Φ1 ∧ Φ2) = common ancestor(range(Φ1), range(Φ2))

• Φ1 ∨ Φ2 is a subquery;
range(Φ1 ∨ Φ2) = common ancestor(range(Φ1), range(Φ2))

• Φ1 − Φ2 is a subquery;
range(Φ1−Φ2) = common ancestor(range(Φ1), range(Φ2)).

1 Each of these sub-queries can further be decomposed into simpler sub-queries.
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− A query is of the form: Q = {m|Φ(m)} where: Φ is a subquery.

The function common ancestor returns the common ancestor in the
type system. The DISIMA type system is rooted, so given two image
classes, the common ancestor always exists. The query is normalized
(negations are pushed in) in the translation. The subqueries are safe
even with negations because they are range restricted.

THEOREM 2. A query expressed in VisualMOQL can always be ex-
pressed in MOQL.

Proof (sketch): The theorem expresses the completeness of MOQL
with respect to VisualMOQL. Since we have already established the
completeness between MOQL and the Algebra and VisualMOQL is
based on the calculus, we need to establish that the DISIMA algebra is
complete with respect to VisualMOQL. Here again the prove is based
on the definitions of the common predicates.

The theorem is necessary to keep one query processor for both
MOQL and VisualMOQL. A query expressed in VisualMOQL is trans-
lated into MOQL before being submitted to the processor.

5. Conclusion
In this paper, we have presented the foundation of the query languages
developed for the DISIMA image database management system. The
query languages are built on an object-oriented model that defines the
types and the algebraic operators. The two main types introduced are
the image type and the salient object types (logical and physical). The
image type defines the content of an image as a set of physical salient
objects that are regions of the image and the semantics of a physical
salient object are given by a logical salient object. Each of the types
introduced can be subtyped by an application developer to define the
application schema. We have introduced an algebra and have shown
that MOQL, the declarative textual query language, is based on the
algebra. We have also shown that VisualMOQL is based on an image
calculus and that a query expressed in VisualMOQL can always be
expressed in MOQL. The whole system is implemented on top of the
ObjectStore object-oriented database management system.

Although ObjectStore provides some querying facilities over collec-
tions, it does not have a built-in declarative query language. Therefore,
we have fully implemented a MOQL query processor, based on an
image algebra. The result of the MOQL parser is an internal query
tree structure which is later transformed into an execution plan. The
query engine uses the query tree directly to generate a non-necessarily
optimized execution plan. This is just a proof of concept. A complete
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query processor should integrate an algebraic query optimizer that will
use some equivalence formulas based on the operators to rewrite the
user query in a more optimal way and a physical query optimizer to
select the optimal access methods for each operation. A challenge in
multimedia query optimization is the integration of partially ordered
subquery results as multimedia uses similarity searches.
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Li, J. Z., M. T. Özsu, and D. Szafron: 1996, ‘Spatial Reasoning Rules in Multime-
dia Management Systems’. In: Proceedings of the International Conference on
Multimedia Modeling MMM’96. Toulouse, France.
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