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Abstract

A popular method of bounding the memory requirements of queries over data streams
is to use a sliding window, where old data are continuously removed as new data arrive.
One problem that has not been addressed previously concerns indexing the results of sliding
window queries. This is a noteworthy problem because data stream systems often materialize
common sub-expressions or final results of similar queries, therefore it is important to allow
the queries efficient access into a relevant subset of the materialized result. In this paper, we
design and evaluate indexing methods that take advantage of the temporal order in which
old answers expire for efficient maintenance and querying of the results. Our techniques
allow sharing of indexed results among similar queries, adapt to fluctuating stream arrival
rates, and are experimentally shown to perform updates over twice as fast as the existing
sliding window indices.

1 Introduction

Sliding windows are used to limit the memory requirements of continuous queries over infinite
data streams. In the sliding window model, queries access the N most recent tuples (count-
based windows) or tuples which have arrived in the last S time units (time-based windows). So
restricted, many otherwise intractable queries may be answered in finite memory. For example,
a join of two infinite streams may require the inputs to be stored in their entirety, but the state
associated with a sliding window join is confined to finite windows.

This paper studies indexing the results of sliding window queries. We consider applications
that intercept massive amounts of streaming data, perform some light-weight processing on-the-
fly, and periodically append newly arrived data to a disk-based archive. The archive maintains
a sliding window of recent results and facilitates more complex off-line processing. Examples
include network traffic analysis, where the archive is mined by an Internet Service Provider (ISP)
in order to discover usage patterns and plan changes to the network infrastructure; transaction
logging, where point-of-sale purchase data are streamed into a data warehouse to examine cus-
tomer behaviour and identify credit card fraud; and networks of sensors that measure physical
phenomena such as air temperature, where the recent data could be used to discover trends and
make predictions.

To motivate the need for materializing query results in the above applications, note that
the archive is expected to be accessed asynchronously by a large number of continuous queries.
Therefore, materializing shared sub-expressions of similar queries is a particularly suitable op-
timization technique; see, e.g., NiagaraCQ [5], PSoup [3], and STREAM [15]. For example, a
join result of two streams of network traffic (arriving from different links or sources) may be
maintained and periodically probed by queries involving the join, but having different selection
predicates and aggregation functions. This reduces query response times because the join is not
re-computed from scratch; it suffices to scan the materialized join result, extract tuples matching
the selection predicate, and compute the aggregation function over the matching tuples.

This approach is beneficial only if queries can efficiently access relevant subsets of the mate-
rialized result. Otherwise, sequentially scanning a large shared result may be less efficient than
separate processing of each query. One way to ensure that continuous queries can quickly access
the data of interest is to build appropriate indices over the shared results. However, the index
maintenance cost must not be so high as to defeat its purpose. Reducing the index maintenance



overhead is particularly challenging in the context of sliding window queries, because new data
continually arrive and old data expire as the window slides forward. Even if updates are per-
formed periodically by buffering the streams, it may still be too expensive to index the evolving
data, especially if the entire index must be scanned during every update.

A solution for indexing disk-resident sliding windows with fast update and access times was
presented in [17]. However, this technique is not compatible with the results of sliding window
queries, as we show in this paper (Section 2). Thus, we propose a more appropriate solution
for indexing the results of queries over time-based windows (Section 3) as well as count-based
windows (Section 4). In Section 5, our techniques are experimentally evaluated under various
conditions and are shown to perform updates over twice as fast as those in [17], with no penalties
in access times. We compare our contributions with related work in Section 6 and conclude in
Section 7.

2 Preliminaries

We begin by outlining our system model and discussing the requirements of indices over the
results of sliding window queries. We also explain the ideas behind the sliding window indices
from [17] and show that they were not designed to handle the results of sliding window queries.

2.1 System Model and Requirements

A data stream is a sequence of relational tuples with a fixed schema. Each tuple obtains a
non-decreasing timestamp, call it ¢s, upon arrival at the system; see [1, 18] for suggestions on
dealing with timestamp assignment at the data source and out-of-order arrival. Incoming tuples
are buffered in main memory, possibly processed in real-time by a set of simple queries, and
periodically appended to a disk-based archive for processing by complex queries. The archive is
responsible for maintaining a sliding window over the stream as well as any query results that
have been chosen for materialization (deciding which sub-results to materialize and adapting to
the changing query workload are two orthogonal problems that we do not pursue here; see, e.g.,
[2, 5]). A particular execution of a query over the archive is assumed to be correct with respect
to the state of the windows as of the most recent update time of the archive.

We assume that queries evaluated in real-time are those which can be computed incrementally
by scanning only the newly arrived tuples. Examples include selection with a simple boolean
predicate and distributive aggregation [7, 10] such as sum. More complex queries that need to
examine the entire window during re-execution are restricted to operate over the archive (e.g.,
non-distributive aggregates such as quantiles or top-k of the most frequent attribute values).

The system executes two types of queries: continuous and ad-hoc. Continuous queries are
re-evaluated periodically until turned off by the user, whereas ad-hoc queries may be posed at
any time and are executed only once over the current state of the stream (or archive). The
ad-hoc query workload is unpredictable, therefore the sub-results stored in the archive may or
may not be helpful. In the remainder of this paper, we will focus on complex continuous queries
over the archive.

An index over the results of a (sub)query must support efficient bulk updates and two access
types: probes (retrieval of tuples with a particular search key value or range), and scans of the



Partitioning by insertion time

I I, Iy l,

12 34 5-6 |7-8 9-10 | 11-12| |13-14| 15-16

\ Replace with new tuples with insertion times of 17-18

Partitioning by expiration time

I I, Iy l,

17-18(19-20 21-22| 23-24) | 25-26| 27-28| | 29-30| 31-32

N

Replace with new tuples with expiration times of 33-34

Figure 1: Two equivalent illustrations of a partitioned sliding window index.

entire index. Index probes correspond to queries that access the shared sub-result and extract
tuples matching a final selection predicate. Index scans are performed by queries that read the
entire sub-result in particular order, such as joins, duplicate elimination, or order-dependent
aggregation such as quantiles. The index directory (e.g., hash table or search tree) is assumed
to fit in main memory and contains pointers to the data, stored as buckets of tuples with the
same search key. The data are assumed to reside on disk.

2.2 Previous Work on Indexing Individual Sliding Windows

There has been previous work on indexing sliding windows on disk, with the goal of allowing fast
bulk-updates and probes [17]. In addition to performing periodic updates, a possible improve-
ment relies on exploiting the temporal order of insertions and deletions from a sliding window.
Given a (time-based) window size of S, each tuple expires exactly S time units after it has been
inserted into the window, meaning that tuples expire in the same order as that in which they
were inserted [9]. This suggests clustering a sliding window index according to the tuple arrival
times, in which case insertions are appended to the new end of the window and deletions occur
from the old end (and the rest of the window does not change). However, a key search would
require a scan of the entire index.

In order to balance the access and update times, [17] chronologically divides the window into
n equal partitions, each of which is separately indexed and clustered by search key. An example
is shown in Figure 1, where a window of size 16 minutes that is updated every 2 minutes is split
into four sub-indices: I, Is, I3, and I4. On top, the window is partitioned by insertion time.
On the bottom, an equivalent partitioning is shown by expiration time; the window size of 16 is
added to each tuple’s insertion time to determine the expiration time. As illustrated, an update
at time 18 inserts newly arrived tuples between times 17 and 18 (which will expire between times
33 and 34) into I, at the same time deleting tuples which have arrived between times one and 2
(or which have expired between times 17 and 18). The advantage of this approach is that only
one sub-index is affected by any given update; for instance, only I; changes at times 18 and 20,
only Iy will change at times 22 and 24, and so on. The tradeoff is that access times are slower
because multiple sub-indices are probed to obtain the answer.

The existing partitioned indices for sliding windows include DEL (delete), REINDEX, and
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Figure 2: Updating a WATA index.

WATA (wait-and-throw-away) [17]. The first two were illustrated in Figure 1. REINDEX
always stores tuples with the same search key contiguously in one dynamically-sized bucket.
Thus, it must recluster updated sub-indices. DEL allocates multiple fixed-size buckets for each
key (usually not contiguously), therefore updates may cause additional buckets to be created
or existing buckets to be deleted, if empty. REINDEX is faster to probe because only one
bucket is accessed to find all tuples with a given search key, but DEL may be updated more
quickly because sub-indices are not reclustered. Additionally, DEL incurs some space overhead
for pre-allocating buckets that may never fill up.

WATA is shown in Figure 2 for the same parameters as in Figure 1 (a window of 16 minutes
refreshed every 2 minutes and split into four sub-indices). At times 18 and 20, insertions are
appended to I, but deletions from I; are postponed until time 22, when I; is dropped and
rebuilt with new data. Thus, rather than deleting from I[; gradually, we wait and throw it
away when every tuple inside it has expired. The advantage of WATA is that updates are fast.
However, it has the longest probe times because expired tuples must be identified and skipped,
and it requires additional space for storing expired tuples.

An optimal partitioning of a W AT A index is as follows [17]. Let n be the number of sub-
indices, 7 be the time interval between two consecutive updates, and p be the number of times
that a window is updated until it rolls over completely. The first (p — 1) mod (n —1) sub-indices

P P

have size [ﬁr], all but one of the remaining sub-indices have size Lﬁrj, and the remaining

sub-index has size 7.

2.3 Limitations of Previous Work

The above technique relies on the fact that tuples expire from the window at predictable times
and in order of arrival. However, the majority of sliding window queries may expire their results
in different order [9]. Let Q(7) be the answer of a continuous query @ at time 7. At any time,
Q(7) must be equal to the output of a corresponding one-time relational query whose input is



the current state of the streams and sliding windows referenced in Q! [9, 11, 13]. Q is monotonic
if Q(7) C Q(7 +¢) for all 7 and all € > 0. In other words, @ is monotonic if its result set only
incurs insertions over time, e.g., a join of two infinite streams. All sliding window queries are
non-monotonic because their results expire over time as the windows slide forward. In [9], we
developed the following categorization of sliding window queries based upon the order in which
their results expire?.

Weakest non-monotonic queries do not reorder incoming tuples during processing and there-
fore expire results in generation order. Selection over a single window is one example; it drops
some tuples, but the relative order of the surviving tuples does not change. We do not study
these queries any further because their results may be indexed using the techniques from [17].

Weak non-monotonic queries do not expire results in generation order, but have the property
that the expiration time of each result tuple can be determined at generation time. Examples
include sliding window joins, where a result tuple expires if any one of the joined tuples expires
from its window. That is, the expiration time of a join result can be calculated as the minimum
of the expiration times of the individual tuples participating in the result. This means that the
“lifetime” of join results may vary from one time unit up to the length of the smallest window
referenced in the join. For instance, if a newly arrived tuple joins with a tuple from another
window that is about to expire, then the result will have a short lifetime. Consequently, the
expiration order of the results is different from their generation order, though the expiration
times may still be calculated via timestamps. Indexing the results of weak non-monotonic
queries will be discussed in Section 3.

Strict non-monotonic queries have the property that at least some of their results expire
at unpredictable times. One example is negation over two sliding windows, where some results
expire due to the movement of the sliding windows, but others expire according to the operator
semantics. Suppose that a result tuple with attribute value v is in the answer set of a negation
over two windows, Wy — W5. That is, there are tuples with value v in W7 but not in Ws.
If at any time a Ws-tuple arrives with value v, result tuples with value v must be deleted.
These premature deletions are usually implemented as negative tuples that are generated by the
negation operator and propagated through the query plan [11]. Note that those result tuples
which are not deleted by arrivals of matching Ws-tuples expire in predicable order, as in weak
non-monotonic queries. We will deal with this case in Section 3.5.

A partitioned index similar to that in Figure 1 is inappropriate for sliding window query
results where the insertion order differs from the expiration order (i.e., for all but the weakest
non-monotonic queries). First, suppose that we partition the data by generation time, as in
the top of Figure 1. At time 18, only I; is accessed in order to insert newly generated results,
as before. However, all three sub-indices need to be scanned to determine which results have
expired (it is no longer the case that only the results generated between times one and 2 expire
at time 18). Similarly, partitioning the index according to the result deletion times, as in the
bottom of Figure 1, means that all the expired tuples at time 18 can be found in I7, but there
may be insertions into every sub-index (it is not the case that all the new results generated
between times 17 and 18 will expire between times 33 and 34).

n our context of periodic window updates, we require the answer to reflect the state of the sliding windows
as of the most recent update, as discussed in Section 2.1.
2For now, all windows are assumed to be time-based. We will address count-based windows in Section 4.



3 Indexing the Results of Queries over Time-Based Windows

As seen in the previous section, a partitioned sliding window index balances two requirements:
clustering by search key for efficient probing and by tuple arrival time so that updates are con-
fined to one sub-index. Indexing the results of sliding window queries involves three conflicting
requirements: clustering by search key for efficient probing, by arrival time for efficient inser-
tions, and by expiration time for efficient deletions. In this section, we propose a solution for
indexing time-evolving data whose generation order is different from the expiration order. The
idea, which we call a doubly partitioned index, is to simultaneously divide the data by genera-
tion and expiration time. We begin by discussing indexing the results of weak non-monotonic
queries and present extensions to strict non-monotonic queries in Section 3.5.

3.1 Variants of Doubly Partitioned Indices

A simple example of a doubly partitioned index (we will present an improved variant shortly) is
shown in Figure 3 for a result over a 16-minute window updated every 2 minutes, as in Figure 1.
Each of the four sub-indices contains a directory on the search key. Note that the ranges of
insertion and expiration times are chronologically divided into two partitions each, creating a
total of four sub-indices. For example, at time 16, I; stores results generated between times one
and 8 that will expire between times 17 and 18. The update illustrated on top takes place at
time 18, inserts new tuples into I; and I, and deletes expired tuples from I; and I3. The next
update occurs at time 20 and is shown at the bottom, with circled intervals highlighting changes
made by the previous update. Again, new results are inserted into I; and Io, and expired tuples
are deleted from I; and I3. The situation is similar for the next two updates in that I4 does not
have to be accessed. Then, the next four updates at times 26, 28, 30, and 32 will insert into I3
and I4, and delete from I and I (I; will not be accessed). In general, increasing the number of
partitions leads to more sub-indices not being accessed during updates, thereby decreasing the
index maintenance costs.

The flaw with partitioning the insertion and expiration times chronologically is that the
sub-indices may have widely different sizes. In Figure 3, at time 16, I stores tuples that arrived
between times one and 8 and will expire between times 25 and 32. That is, Is is empty at this
time because there are no result tuples that remain in the answer set for a time longer than
Ssw. As a result, the other sub-indices are large and their update costs may dominate the
overall maintenance cost.

We address this problem by adjusting the timestamp intervals spanned by each sub-index.
The improved technique, which we call round-robin partitioning, is illustrated in Figure 4 for the
same parameters as in Figure 3 (result over 16-minute windows updated every two minutes).
Rather than dividing the insertion and expiration time ranges chronologically, it distributes
updates in a round-robin fashion such that no sub-index experiences two consecutive insertions
or expirations. For instance, the update illustrated on top of Figure 4 takes place at time 18,
inserts new tuples into I; and I» and expires tuples from I; and I3. The next update at time
20 is illustrated on the bottom of Figure 4, with circled intervals marking changes made by
the previous update. It inserts new tuples into I3 and I, and deletes old tuples from Iy and
I4. The fact that consecutive updates are spread out over different sub-indices ensures that the
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Figure 3: Example of a doubly partitioned index, showing updates at times 18 (top) and 20
(bottom).

sub-indices have similar sizes. In Appendix A, we prove the following theorem.

Theorem 1 Given a constant rate of insertion into the result, the average variance of sub-index
sizes using round-robin partitioning is lower than the average variance of sub-index sizes using
chronological partitioning.

Doubly partitioned indices are compatible with two bulk-update strategies. In what we call
Rebuild, updated sub-indices are reclustered such that all the tuples with the same search key are
contiguous. In what we call NoRebuild, sub-indices consist of pre-allocated buckets and insertions
may create new buckets, whereas deletions may cause some buckets to be partially empty. These
are similar to REINDEX and DEL from [17], but note that our techniques partition the data
by insertion and expiration time, and assign updates to sub-indices in a round-robin fashion
rather than chronologically. Moreover, we can apply an update strategy resembling WATA, but
only for the insertion times®. An example is shown in Figure 5 for the same parameters as in
Figures 3 and 4; the sizes of the generation time partitions have been chosen as outlined in
Section 2.2. The update illustrated on top (at time 18) does not access I; and I, and neither
does the next update shown on the bottom (at time 20). In fact, I; and Iy will not be updated
until time 30, at which point all of their tuples will have expired and will be replaced with newly
arrived tuples. Meanwhile, all the insertions up to time 30 are routed to I3 and Iy. We call
this index type LazyNoRebuild or LazyRebuild, depending on the clustering technique. Note
that chronological partitioning is only used for insertion times, whereas expiration times are

3A WATA index divided by expiration time does not make sense because insertions would need access to each
sub-index. However, if every sub-index must be accessed, we may as well remove expired tuples in the oldest
sub-index at the same time.
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Figure 4: Example of a round-robin doubly partitioned index, showing updates at times 18 and
20.

Table 1: Summary of Doubly Partitioned Indexing Techniques

Insertion | Deletion | Recluster?
Times Times
Rebuild RR RR Yes
NoRebuild RR RR No
LazyRebuild Chr RR Yes
LazyNoRebuild Chr RR No

partitioned in a round-robin fashion to ensure that at least some of the sub-indices have similar
sizes.

Table 1 summarizes the doubly partitioned indices in terms of the partitioning strategies of
the insertion and deletion times, and the decision to recluster the data after updates. RR denotes
round-robin partitioning and Chr denotes chronological partitioning. Appendix B contains
algorithms for all the doubly partitioned indexing techniques discussed in this section.

3.2 Cost Analysis

Let n be the number of sub-indices, G be the number of partitions of generation (insertion)
times, and E be the number of partitions of expiration times (n = G x E). The number of sub-
indices accessed during each update is G+ FE — 1 for Rebuild and NoRebuild, and G + FE — 2 for
LazyRebuild and LazyNoRebuild. The latter two update one fewer sub-index because sub-indices
associated with the oldest insertion times are not accessed (recall Figure 5). To choose optimal
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Figure 5: Example of a LazyRebuild or LazyNoRebuild index, showing updates at times 18 and
20.

values for G and F with respect to the number of sub-index accesses, we minimize G + E given
that G x E = n and G, E > 2, which yields G=E=+/n. For simplicity, we assume that n is a
perfect square.

Increasing n increases the space requirements (each sub-index requires its own in-memory
directory on the search key) and leads to slower query times because index scans and probes need
to access all n sub-indices. Additionally, more individual sub-indices are accessed during updates
as n increases. However, the sub-indices are faster to update because they are smaller, and the
fraction of the data that need to be updated decreases. For instance, Rebuild with G = E = 2
updates three out of four sub-indices, but increasing G and E to four means that only seven
of the sixteen sub-indices are accessed during updates. We expect that increasing n initially
decreases update times, but eventually a breakpoint may be reached where the individual sub-
indices are small and making any further splits is not helpful. The breakpoint value of n should
therefore be higher for larger data sets.

The other part of the maintenance and query costs is contributed by the operations done
after a sub-index is accessed. Fixing G and E, Rebuild should be the fastest to query, but slowest
to update (especially as the data size grows, because rebuilding large indices may be expensive).
Access into NoRebuild is slower because tuples with the same search key may be scattered across
many buckets, but NoRebuild should be faster to update because individual updates are less
costly than rebuilding an entire sub-index. Furthermore the total size of NoRebuild may be
larger than Rebuild because some pre-allocated buckets may not be full. Finally, LazyRebuild
and LazyNoRebuild should have the fastest update times (they always update one fewer sub-
index than the other methods), but the slowest query times and highest space usage (they may
store some expired tuples). For example, the index in Figure 5 does not delete expired tuples
from I; and I, therefore it requires up to 50 percent more space than an equivalent Rebuild or

10



NoRebuild index (this occurs when I; and I are nearly full with expired tuples and are about
to be rebuilt). In general, the space overhead of LazyRebuild and LazyNoRebuild is less than or
equal to é

3.3 Dealing with Fluctuating Stream Conditions

The preceding discussion assumed uniform query result generation rates, in which case Theo-
rem 1 guarantees similar sub-index sizes with round-robin partitioning. However, in the worst
case, the result generation rate may alternate between slow and bursty periods, causing the
round-robin allocation policy to create some sub-indices that are very large and some that are
very small. The algorithmic solution in this case is to randomize the update allocation pol-
icy. In practice, though, we expect random fluctuations in the result generation rate to arise
from two factors: either the stream arrival rates are bursty or the attribute value distribution
changes. Furthermore, the change may be persistent for several updates, or short-lived between
two consecutive updates. In both cases, we expect the round-robin partitioning techniques to
adapt to the new conditions. Given a persistent change, round-robin update allocation ensures
that updates are spread out across the sub-indices. Thus, if a query begins to produce more
(or fewer) results, each sub-index will in turn get larger (or smaller), until all the sub-indices
have similar sizes again. Using chronological partitioning, the same sub-index would receive a
number of consecutive updates and become either much larger or much smaller than the others.
If a change is short-lived, it is also better to begin with equal sub-index sizes. Otherwise, a
burst of results could be inserted into a large sub-index, which would become even larger.

3.4 Sharing Results Among Similar Queries

For scalability reasons, data stream systems are expected to evaluate similar queries with differ-
ent window sizes together rather than forcing each query to probe the index separately [12]. That
is, one index probe is performed per group of similar queries, followed by a filtering step that
distributes results among the queries as appropriate. Doubly partitioned indices are compatible
with this requirement by allowing the extraction of sub-results over windows with smaller sizes.
In the simplest case of shortening each window by the same amount, we ignore result tuples
with the oldest expiration times during index probes. For example, a join result of windows of
size 20 can be used by a join of windows of size 16 by omitting results that are scheduled to
expire within the next four time units. Similarly, a join result of three windows of size 16, 18,
and 20 can be used by a join of windows of size 14, 16, and 18 by discarding results scheduled
to expire within the next two time units.

If the windows are not shortened by the same amount, our indexing techniques still apply.
However, it is necessary to store additional timestamps within result tuples, corresponding to
windows whose sizes change across queries. For instance, consider using a join result over j
windows of size 20 each to compute a join of the first j — 1 windows of size 20, and the last
window of size 10. Doing so requires storing three timestamps per result tuple: generation
time, expiration time, and the timestamp of the participating tuple from the last window. The
tradeoff is that storing additional timestamps could offset the advantages of sharing—the extra
memory used by timestamps may be higher than maintaining two separate results. We intend
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to study this issue in future work.

3.5 Note on Strict Non-Monotonic Queries

As discussed in Section 3.1, some results of strict non-monotonic queries expire naturally as
determined by timestamps, but others may expire prematurely if they cease to satisfy the query
semantics. In terms of index partitioning, this implies that deletions may occur in any sub-index
at any time. Our solution is to defer premature deletions from indices which are not scheduled
to be updated during a particular time interval. For example, in Figure 4, I, is not updated
at time 18, but it is updated at time 20, so we propose to postpone updates of I, caused by
premature expirations at time 18 until time 20. Meanwhile, we store a list of invalidated key
values and refer to this list when probing I to ensure that invalidated tuples therein are ignored
by queries. Relative to indexing the results of weak non-monotonic queries, this modification
results in slightly longer probe times and higher memory usage due to storing invalidated tuples.

4 Extensions to Count-Based Sliding Windows

The order in which queries over count-based windows expire their results is more difficult to
characterize because expirations depend on the arrival rates of the input streams. We now
present a modification of our indexing techniques that applies in this case, provided that the
variation in the arrival rates can be bounded.

4.1 Motivation

Maintenance of individual count-based windows is simple: not only are tuples expired in the
same order as they arrive, but each insertion triggers exactly one expiration. However, this is
not the case for query results over count-based windows—even a simple query such as selection
does not contain the same number of results at all times. Furthermore, the nature of timestamps
in count-based windows severely complicates the analysis of expiration patterns.

Assume that new tuples on each stream are assigned consecutive integer “timestamps” that
determine their relative position in the window. Consider a join of three count-based windows
of size 50 each, W7y, Ws, and W3, with all windows storing tuples with timestamps 1 through 50
at the current time. Suppose that a result tuple ¢ consists of three individual tuples from the
three input windows, having timestamps of one, two and two, respectively. To determine when
t expires, we verify if at least one of its constituent tuples has expired from the corresponding
window. Thus, ¢ expires either when tuple with timestamp 51 is inserted into W7, or when tuple
with timestamp 52 is inserted into W5, or when tuple with timestamp 52 is inserted into W3,
whichever comes first. In other words, we need one new insertion into Wi, or two new insertions
into W5 or W3. However, we do not know when these new tuples will arrive. In the general case,
result expiration times cannot be predicted, meaning that queries over count-based windows
are strict non-monotonic (recall Section 2.3). This is different from queries over time-based
windows, where timestamps are defined in terms of absolute time and result expiration times
are independent of the arrival rates. As a result, it may not be possible to design a partitioned
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index over count-based window query results that does not have to be scanned in its entirety
during every bulk-update.

4.2 Solution

The general problem appears intractable; however, we can at least estimate the expiration times
of result tuples based on the observed stream arrival rates. Although the estimates may be
incorrect because the arrival rates may fluctuate, we can attempt to use our doubly partitioned
indices and periodically insert (and delete) result tuples into particular sub-indices based on
their guessed expiration times. To do this, each result tuple stores as many timestamps as there
are windows referenced in the query, denoting the relative positions of all the base tuples in
their windows. All of these timestamps are needed to determine if the result tuple has in fact
expired. The guessed expiration timestamps are first used to select the sub-index into which
new results should be inserted, and then to select which sub-indices are due for an update. The
problem is that deletions become more complicated and may require access to more sub-indices
than before.

To see why expirations are more difficult, consider a Rebuild or NoRebuild index from Fig-
ure 4. When an update takes place at time 18, newly generated tuples with insertion times of
17 through 18 are added to I; and I», as before. However, it is not immediately clear which
result tuples should be examined for possible expiration. First, suppose that the stream arrival
rates speed up, causing some result tuples to expire sooner than we had originally estimated.
At time 18, instead of deleting result tuples with expiration times between 17 and 18, we may
need to examine tuples with estimated expiration times between 17 and, say 20. On the other
hand, if the arrival rates slow down, some result tuples with estimated expiration times of 17 to
18 may not expire until the next update at time 20, as illustrated in Figure 6. This is why it
is necessary to assume a bounded variation in the stream arrival rates. This way, each update
may be associated with a range of guessed expiration times within which we are sure to find all
the expired tuples. For simplicity, we assume that it is sufficient to scan the expiration range
assigned to the current update, as well as the previous and next update. For example, the
update illustrated in Figure 6 will scan the expiration time range of 19 and 20, as well as 17 to
18 and 21 to 22.

Given that a range of guessed expiration times may be computed for each update, the
remaining problem with storing the results of count-based window queries in a doubly partitioned
index is that expirations may need to access more sub-indices than before. Returning to the
above examples, note that all four sub-indices in Figure 4 need to be accessed if the arrival rates
increase and the examined expiration times at time 18 are no longer 17 to 18, but rather 17 to
20. This is different from time-based windows, where even if the arrival rates fluctuate, tuples
which should be deleted at time 18 are known to have expiration times of 17 to 18. Similarly,
all four sub-indices in Figure 6 may need to be accessed at time 20 if the arrival rates slow
down. This is because the update at time 20 expires old tuples from different sub-indices than
the previous update at time 18.

As seen above, round-robin partitioning does not cope well with errors in estimating the ex-
piration times. Chronological partitioning may be better suited, but, as discussed in Section 3.1,
it produces sub-indices with different sizes, even if the stream arrival rates are fixed. Fortunately,
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Insert new tuples with insertion times of 19-20

17-18‘5-6 9-10(13-14 (17-18 5-6 | 9-10(13-14 |3-4 | 7-8 (11-1215-16 | 3-4 | 7-8 [11-1215-16

T 21-2225-2%29-30 19-2023-2427-2%31-32 T18121-2225-2629-30 19-2023-2427-2%31-32

Delete expired tuples with expiration times of 19-20

Delete leftover expired tuples with expiration times of 17-18

Figure 6: Updating a doubly partitioned Rebuild or NoRebuild index over count-based window
query results. The illustrated update occurs at time 20.

Table 2: Summary of All Doubly Partitioned Indexing Techniques

Insertion | Deletion | Recluster?
Times Times

Rebuild RR RR Yes
NoRebuild RR RR No
LazyRebuild Chr RR Yes
LazyNoRebuild Chr RR No
CountRebuild RR Chr Yes
CountNoRebuild RR Chr No

in the context of queries over count-based windows, chronological partitioning is needed only
for expiration times because the type of partitioning done on the insertion times does not affect
deletions. Thus, our proposed solution retains round-robin partitioning for generation times to
help ensure that the sub-index sizes are similar. The resulting structure, which we call CountRe-
build or CountNoRebuild depending on the clustering technique, is illustrated in Figure 7, for
the same parameters as in Figure 3 (16-minute window split into four sub-indices and updated
every two minutes). An update at time 18 is shown on the top, assuming that there are no
changes in the stream arrival rates (that is, assuming that expired tuples at time 18 all have
guessed expiration times of 17 to 18). On the bottom, we show an update at time 20, given that
the arrival rates may have increased or decreased. In either case, it is usually possible to localize
expirations to two sub-indices due to chronological partitioning of the expiration times (but not
always, e.g., all four sub-indices need to be accessed in order to scan the expiration time range of
23 t0 26). In the context of count-based windows, updating CountRebuild and CountNoRebuild
should therefore incur fewer sub-index reads and writes than Rebuild and NoRebuild, at the
expense of more variation in sub-index sizes.

Table 2 summarizes all of the proposed indexing strategies, including those presented in Sec-
tion 3.1 for the results of queries over time-based windows. As in Table 1, we list the partitioning
strategies for generation and expiration times (RR denotes round-robin partitioning and Chr
denotes chronological partitioning), and whether or not updated sub-indices are reclustered. We
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Delete expired tuples with expiration times of 17-18 Partitioning by expiration time

Insert new tuples with insertion times of 19-20
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Y/,

Delete expired tuples with expiration times of 19-20, also possibly some with
expiration timestamps of 17-18 or 21-22

Figure 7: Example of a round-robin/chronological partitioning strategy for indexing results of
queries over count-based windows ( CountRebuild or CountNoRebuild), showing updates at times
18 and 20.

do not consider adapting LazyRebuild and LazyNoRebuild to queries over count-based windows
because these would require chronological partitioning of both insertion and expiration times,
thereby causing exceedingly large variance of sub-index sizes. Appendix B contains an algorithm
for CountRebuild and CountNoRebuild.

5 Experiments

This section contains an overview of our implementation (Section 5.1) and experimental results.
Sections 5.2 through 5.4 present results of experiments with a small window size of approximately
500 Megabytes (this corresponds to 500000 time units, with an average of one result tuple
generated per time unit). In Section 5.5, we investigate index performance over larger windows
with sizes of up to 5 Gigabytes (i.e., 5 million time units, with an average of one result tuple per
unit time). We then present performance results for strict non-monotonic queries (Section 5.6),
and queries over count-based windows (Section 5.7). Our experimental findings are summarized
in Section 5.8.

5.1 Implementation Details

We implemented the doubly partitioned indices (Rebuild, NoRebuild, LazyRebuild, LazyNoRe-
build, CountRebuild, and CountNoRebuild) using Sun Microsystems JDK 1.4.1, and tested them
on a Linux PC with a Pentium IV 2.4Ghz processor and 2 Gigabytes of RAM. For comparison,
we also implemented the indices from [17], split by insertion or expiration time: REINDEX
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Figure 8: The structure of one sub-index in NoRebuild, LazyNoRebuild, CountNoRebuild, DEL,
and WATA.

(R-ins or R-exp), DEL (D-ins or D-exp), and WATA (split by insertion time only). In this
section, we refer to the indexing techniques by their abbreviations, followed by the value of n
(number of sub-indices) or values of G and E (number of partitions of insertion and expiration
times, respectively), e.g., R-ins4 or Rebuild2x2.

Each test consists of an initial building stage and an update stage. In the building stage,
we simulate one window of results from a join of m windows using a specified distribution of
search key values (uniform or Power Law). Next, we generate periodic updates using the same
key distribution and insert them into the index, at the same time removing expired tuples, until
the window rolls over. After each update, we perform an index probe (retrieving tuples having
a randomly chosen search key value) and an index scan, and report the average processing time
for each operation.

Each indexing technique consists of an array of sub-indices, with each sub-index containing a
main-memory directory (implemented as a linked list sorted by search key) and a random access
file storing the results. The file is a collection of buckets storing tuples with the same search
key, sorted by expiration time. Individual tuples are 1000 bytes long and contain an integer
search key, integer insertion and expiration timestamps, as well as a string that abstractly rep-
resents the contents of the tuple. The structure of one sub-index in NoRebuild, LazyNoRebuild,
CountNoRebuild, DEL, and WATA is illustrated in Figure 8, showing the directory with offset
pointers to locations of buckets in the file (we also store how many tuples are in each bucket
as not all buckets are full). Rebuild, LazyRebuild, CountRebuild, and REINDEX are structured
similarly except that one variable-size bucket is maintained for each search key.

A number of simplifications have been made to focus the experiments on the relative per-
formance of doubly partitioned indices. First, bucket sizes are not adjusted upon overflow; this
issue was studied in [6] in the context of skewed distributions and is orthogonal to this work.
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Figure 9: Relative performance of Rebuild4x4, Rebuild2x8, and Rebuild8x2.

Instead, we implemented a simple strategy that allocates another bucket of the same size for the
given key. We also ignore the fact that empty buckets should be garbage-collected periodically
by compacting the file, because this operation adds a constant amount of time to the mainte-
nance costs of each indexing technique. Second, the number of search key values is fixed at 100
to bound the length of the directory. Otherwise, query times may be dominated by the time it
takes to scan a long list; handling a larger set of key values can be done with a more efficient
directory, such as a search tree, and is orthogonal to this work. Third, the number of tuples
per bucket in NoRebuild, LazyNoRebuild, CountNoRebuild, and DEL is based upon the initial
distribution of key values in the building stage, such that each sub-index contains an average
of 2.5 buckets per search key. We found this value to be a good compromise between few large
buckets per key (which wastes space because many newly allocated buckets never fill up) and
too many buckets (which results in slower query times). Finally, we update the results 36 times
until the window rolls over. Varying the update frequency demonstrates a clear tradeoff between
the total update time and the average answer latency [8], and is not discussed further.

5.2 Optimal Values for G and F

We begin by validating our results from Section 3.2 regarding the optimal assignment of values
for G (number of partitions of generation times) and E (number of partitions of expiration times)
given a value for n (number of sub-indices). Figure 9 shows the normalized update, probe, and
scan times for Rebuilddx4, Rebuild2x8, and Rebuild8x2, given a uniform distribution of search
key values; other index types and a Power Law distribution of key values give similar results.
Rebuild4x4 performs best in terms of scan and probe times, though the difference is negligible
because all three techniques probe the same number of sub-indices to obtain query results and
all the sub-indices have roughly equal sizes. The average update time of Rebuild4x4 is lower than
the other techniques because the number of sub-indices updated by Rebuild4x4 is 7, versus 9 for
the other two strategies. Notably, Rebuild8x2 can be updated faster than Rebuild2x8 because
tuples inside buckets are ordered by expiration time, and therefore deletions are simple (tuples
are removed from the front of the bucket) but insertions are more complex (whole bucket must
be scanned). Since the number of insertions is determined by the number of partitions in the
lower level, the technique with a smaller value of E wins.
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5.3 Performance of Doubly Partitioned Indices

We now compare our doubly partitioned indices with the existing algorithms. As per the previous
experiment, we test our techniques only with the following splits: 2x2, 3x3, 4x4, and 5x5. One
exception is that LazyNoRebuild2x2 and LazyRebuild2x2 are not tested due to their excessive
space overhead of up to fifty percent (recall Section 3.2). We also omit results for R-exp and
D-exp because these always incur longer update times than R-ins and D-ins. As before, this is
because insertions are more expensive than deletions if buckets are sorted by expiration time,
therefore splitting an index by expiration time forces insertions into every sub-index. Moreover,
we only report results with search keys generated from a uniform distribution for this and all
remaining experiments. Results using a Power Law distribution (with the power law coefficient
equal to unity) produce similar relative results, except that NoRebuild and DEL are slower to
update due to their simple bucket re-allocation mechanism.

Figures 10, 11, and 12 show the average update, probe, and scan times, respectively, as
functions of n (number of sub-indices). Figure 10 additionally shows the update times of doubly
partitioned indices with chronological splitting on both levels (denoted by chr) in order to single
out the benefits of round-robin partitioning. Even chronological partitioning outperforms the
existing strategies by a factor of two as n grows, with round-robin partitioning additionally im-
proving the update times by ten to 20 percent. As explained in Section 3.2, LazyNoRebuild per-
forms the fastest updates, followed by LazyRebuild, NoRebuild, and Rebuild. Conversely, Rebuild
has the lowest probe and scan times, followed by NoRebuild, LazyRebuild, and LazyNoRebuild.

The update overhead of Rebuild relative to NoRebuild is roughly five percent for n < 9
and decreases to under two percent for large n. The relative savings in index probe times of
Rebuild are less than one percent. This is because we use a relatively small window size in
this experiment, meaning that the individual sub-indices are small and can be rebuilt quickly.
Additionally, all the buckets with a particular search key may be found with a small number
of disk accesses, even if the buckets are scattered across the file. Hence, probing NoRebuild is
only slightly more expensive than probing Rebuild, where all the search keys are in the same
bucket. In general, Rebuild and NoRebuild perform probes slightly faster than R-ins and D-ins
because the sub-indices in our techniques have similar sizes, and therefore we do not encounter
“bad cases” where probing one or more large sub-indices inflates the access cost.

As n increases, the access times grow because more sub-indices must be probed separately,
whereas update times decrease initially, but begin growing for n > 25 (or n > 9 for REINDEX,
DEL, and WATA). This confirms our hypothesis from Section 3.2 regarding the effects of the two
factors influencing update costs: as n increases, the amount of data to be updated decreases, but
the number of individual sub-index accesses increases. The latter is the reason why the update
costs of R-ins, D-ins, and WATA start increasing for smaller values of n than those for our
two-level techniques: the existing techniques access all n sub-indices during updates, whereas
our techniques only access O(G + E) = O(y/n) sub-indices.

Given a fixed value of n, Rebuild and R-ins both have the lowest space requirements, followed
by NoRebuild and D-ins, and then by WATA, LazyRebuild, and LazyNoRebuild. NoRebuild and
D-ins incur the overhead of pre-allocating buckets which may never fill up (the exact space
penalty depends on the bucket allocation strategy, which is orthogonal to this work). Addition-
ally, WATA, LazyRebuild, and LazyNoRebuild may store expired tuples (recall Section 3.2). As
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Figure 10: Update times of index partitioning techniques given a small window size.
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Figure 13: Effect of fluctuating stream conditions on index update performance.

n increases, all techniques require more space to store the individual sub-index directories.

To measure the overhead associated with our indexing techniques, we also tested chronolog-
ical and round-robin partitioning without indices. Update times were down by approximately
20 percent because index directories did not have to be updated and files were not reclustered.
However, probes and scans both required a sequential scan of the data, and took approximately
the same amount of time as index scans in Figure 12, namely on the order of 600 seconds.
Thus, our indexing techniques incur modest update overhead, but allow probe times that are
two orders of magnitude faster than sequential scan.

5.4 Adapting to Fluctuating Stream Conditions

In this experiment, the result generation rate varies randomly by a factor of up to four. We
set the total amount of results generated to be approximately the same as in the previous
experiment in order to enable a head-to-head comparison. The average access times did not
exhibit any interesting changes aside from being slower by several percent, therefore we focus on
the update times, as illustrated in Figure 13 for selected techniques (R and NoR denote Rebuild
and NoRebuild, respectively). The darkened portion of each bar corresponds to the increase in
update time caused by the fluctuating result generation rate.

Doubly partitioned indices are more adaptable to changing input rates than R-ins and D-
ins. NoRebuild and Rebuild are more significantly affected by fluctuations for larger values of
n, whereas R-ins and D-ins exhibit the worst performance for small values of n. This can
be explained as follows. Rebuild and NoRebuild use round-robin partitioning, meaning that
updates are scattered across sub-indices, therefore a large value of n means that it takes longer
for the new result generation rate to take effect in all the sub-indices. On the other hand, R-ins
and D-ins use chronological partitioning, therefore a large value of n means that the sub-indices
have shorter time spans and therefore bursty updates spread out faster across the sub-indices.
Finally, Rebuild and R-ins are more resilient to fluctuations than NoRebuild and D-ins because
the latter two use a simple (non-adaptive) bucket allocation technique.
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5.5 Scaling up to Large Window Sizes

This test investigates the behaviour of our techniques when indexing large amounts of data.
The average update, probe, and scan times as functions of n are shown in Figures 14, 15, and
16, respectively. Compared to results using a smaller window (Figures 10, 11, and 12), doubly
partitioned indices are now up to three times as fast to update as the existing techniques.
As before, updates are the fastest for LazyNoRebuild and LazyRebuild, followed by NoRebuild
and Rebuild, whereas Rebuild is the fastest to probe and requires the least space, followed by
NoRebuild, LazyRebuild, and LazyNoRebuild. Additionally, the gap between the update and
query times of Rebuild versus NoRebuild is now wider. Rebuild is two to three percent faster
to probe, but between five (for n = 25) and nine (for n = 4) percent slower to update; the
corresponding percentages from Figure 11 are less than one percent and roughly three percent,
respectively. This is the expected outcome of using a larger window size: Rebuild becomes slower
to update because it must recluster larger sub-indices, whereas NoRebuild becomes slower to
probe because there are more result tuples with the same search key, spread over multiple buckets
and possibly multiple disk pages.

Another difference between Figures 14 and 10 is the behavior of update times as n grows.
In Figure 10, there is a turning point (at n = 16 for NoRebuild, Rebuild, LazyNoRebuild, and
LazyRebuild) after which update times do not decrease. This is not the case in Figure 14, where
update times continue to drop for all tested values of n. This is because the window size, and
hence individual sub-index sizes, are larger, therefore the drop in performance caused by making
the sub-indices too small is not an issue for n < 25.

5.6 Index Performance with Strict Non-Monotonic Queries

There is an overhead associated with maintaining indexed results of strict non-monotonic queries,
namely storing and keeping track of invalidated tuples that have not yet been deleted. The time
needed to maintain a linked list of invalidated keys during updates (sorted by search key) and
the additional time to scan this list during index probes do not contribute significantly to the
overall cost. According to our tests, the update and index probe overhead was on the order of
five percent. The overhead is modest because only some of the result tuples expire prematurely,
whereas the others expire in the same way as in weak non-monotonic queries and can be handled
easily by our indexing techniques.

5.7 Queries Over Count-Based Windows

In the final test, we investigate index performance for queries over count-based windows. As
in Section 5.4, the arrival rate is allowed to vary randomly by a factor of up to four. We
test D-ins, R-ins, Rebuild, NoRebuild, as well as CountRebuild and CountNoRebuild. Result
expiration times are estimated on the basis of the arrival rates at the time that the results
were generated. Index scan and probe times do not vary significantly from the reported results
for time-based windows, therefore only the update times of selected techniques are shown in
Figure 17. These results were generated using a small window size; similar relative results
were obtained with larger window sizes. Our best doubly partitioned techniques (CountRebuild
and CountNoRebuild) outperform the existing approaches, but the difference is not as great
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Figure 17: Index update performance over count-based windows.

as with time-based windows (recall Figures 10 and 13). This is because CountRebuild and
CountNoRebuild use round-robin partitioning only for the insertion times, therefore the sub-
index sizes are not as uniform as in Rebuild and NoRebuild. Also note that CountRebuild4x4 and
CountNoRebuild4x4 outperform CountRebuild8x2 and CountNoRebuild8x2 (CountRebuild2x8
and CountNoRebuild2x8 are even slower), meaning that setting G = E remains a good choice
in the context of count-based windows.

CountRebuild2x2 and CountNoRebuild2x2 are faster to update than Rebuild2x2 and NoRe-
build2x2, but the difference diminishes as n increases. Moreover, the advantage of CountRebuild
and CountNoRebuild relative to Rebuild and NoRebuild is greater if the arrival rates fluctuate
more widely. The reason is that chronological partitioning is less helpful when the number of
sub-indices is large because each sub-index covers a small time span, so it is likely that dele-
tions will require additional accesses into other sub-indices. On the other hand, chronological
partitioning is useful for small values of n (and when the arrival rates fluctuate widely), where
using round-robin partitioning for the guessed expiration times essentially means that all four
sub-indices are always accessed during updates (recall Section 4.2). Finally, update times in-
crease as more count-based windows are referenced in the query because of the increase in the
total size of the data being indexed; recall that each result tuple of a count-based window query
must store one timestamp for each window referenced in the query.

5.8 Lessons Learned

We make the following general recommendations regarding the best index partitioning strategy.
Our guidelines depend on the data size and the number of continuous queries that are executed
between updates.

e For a small window size and small number of queries, NoRebuild4x4 is a good choice as
it incurs low update times. LazyNoRebuild4x4 is another good choice, but it has higher
memory requirements.

e For a small window size and large number of queries, Rebuild2x2 works best because its
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probe and scan times are low. The probing times of R-insl, and R-ins2 are slightly lower
than those of Rebuild2x2, but updating R-ins is slower.

e For a large window size and small number of queries, we suggest using NoRebuild, but
with a smaller value of n than recommended for small window sizes to ensure that probing
times are not excessively high (e.g., NoRebuild3x3). LazyNoRebuild is not recommended
as its increased memory requirements may be a problem as the data size grows.

e For a large window size and large number of queries, Rebuild becomes expensive to update,
therefore we recommend Rebuild2x2 or Rebuild3x3 only if fast probing times are crucial.
Otherwise, NoRebuild2x2 is a better (more balanced) choice.

e In general, the same guidelines apply for queries over count-based windows with bounded
variations in the stream arrival rates, except that CountRebuild and CountNoRebuild
should be used instead of Rebuild and NoRebuild, especially if the fluctuations in the
arrival rates are large.

6 Comparison with Related Work

This work is related to indexing time-evolving data, analyzing the expiration order of the results
of sliding window queries, and answering sliding window queries using materialized views. Pre-
vious work on indexing sliding windows partitions the data by arrival time [8, 17], which, as we
have shown, is not compatible with data that do not expire in order of arrival. The expiration
patterns of the results of sliding window queries were first analyzed in our previous work on
update-pattern-aware query processing [9]. However, our previous work assumed that all the
data fit in main memory and that intermediate results are partitioned by expiration time. This
is sufficient in the main-memory scenario because the goal is to make expirations more efficient
(by not having to scan the entire result); insertions may be scattered across the entire result
because of the luxury of random access in main memory. In this paper, the fact that the data are
stored on disk means that both insertions and expirations must be localized to a small number
of sub-indices in order to prevent the entire index from being brought into main memory during
each update. Consequently, a doubly partitioned index must be used.

Relevant work on evaluating sliding window queries using materialized views includes choos-
ing which intermediate results to materialize in the context of sliding window joins [2], and
re-ordering query operators (e.g., pushing down joins) to ensure that results may be shared
efficiently among similar queries [4, 5, 14]. These issues are orthogonal to our work on designing
appropriate indexing techniques once an intermediate result is chosen for materialization.

The continuous query workload may fluctuate over time, therefore it may be necessary to
switch between various indexing techniques at some point. This problem is similar to plan
migration in the context of sliding window queries that store state [19]. Two possible solutions
are either stopping the old plan, migrating the state, and starting the new plan, or running both
plans in parallel and discarding the old plan when all the windows roll over. Both strategies
are compatible with our indices in that we can migrate from one index type to another either
by discarding the old index and building a new index, or maintaining both indices in parallel
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until the old index gradually empties out. We intend to study the tradeoffs involved in these
two approaches in future work.

As discussed in Section 2.3, results of sliding window queries are associated with time intervals
corresponding to their lifetimes in the answer set. This suggests a connection with spatio-
temporal interval indexing (see [16] for a survey). The important difference in our work is
that we do not explicitly index the actual intervals, but rather we index individual tuples by
their search keys. It is possible to build a two-dimensional R-tree index over the time intervals
spanned by individual sub-indices, in which case looking up sub-indices which are affected by a
given update could be faster. We did not need to employ this optimization in this work because
the number of sub-indices we were dealing with was relatively small.

7 Conclusions

In this paper, we proposed and evaluated solutions for indexing the results of sliding window
queries, taking advantage of the order in which result tuples are generated and expired. The
challenge of accommodating time-evolving data whose generation order is different from the
expiration order was solved by simultaneously partitioning the index by insertion time and
expiration time. Experimental results showed significant improvements in index update times
under various system conditions. Our indexing techniques may be used by data stream systems
to speed up sliding window queries over a disk-based archive and to improve scalability by
sharing indexed results among similar queries. Future work includes the following issues:

e addressing consistency issues in sliding window indices due to making changes in-place or
replacing an entire sub-index with a copy on which updates have been made;

e improving the performance of indices over count-based window queries by providing more
accurate estimates of expiration times of result tuples;

e investigating the tradeoffs involved in materializing a shared result for queries over windows
with different sizes versus maintaining separate results.
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Appendix A

We now prove Theorem 1 from Section 3.1, which we repeat below for convenience.

Theorem 1 Given a constant rate of insertion into the result, the average variance of sub-
index sizes using round-robin partitioning is lower than the average variance of sub-index sizes
using chronological partitioning.

Examples

Recall that n is the number of sub-indices, S is the size of the (time-based) window, and p is the
number of times that the window is updated until it rolls over completely. Thus, the window
may be thought of as having size p, in units of r, the interval between two consecutive updates.
We enumerate the insertion timestamp (ts) and expiration timestamp (call it exp) ranges as
one through p. For simplicity, we set exp = exp — S so that the two ranges are the same.
Without loss of generality, we suppose that range 1 is the oldest and range p is the youngest.
For example, in Figure 2, n =4, p = 8, r = 2, and the ts and exp ranges of one through two are
denoted by 1, through to the ranges of 15 to 16, which are denoted by p. Given this notation,
a 2x2 chronologically partitioned index from Figure 3 may be characterized as follows.

e I stores results with ¢s ranges of one through £ and exp ranges of one through £.
e I stores results with ts ranges of one through § and exp ranges of £ through p.
e I3 stores results with ¢s ranges of § through p and exp ranges of one through .

e I stores results with ¢s ranges of £ through p and exp ranges of £ through p.

We will calculate the sub-index sizes in terms of the expected number of result tuples they
store. For simplicity, we assume that one unit of size corresponds to the number tuples with
some ts range ¢ and some exp range j, such that 1 <4,j <pand i > j. Due to our assumption
of uniform result generation rate, all such range pairs contain the same number of results. For
instance, the number of result tuples with ts = 1 and exp = 2 is the same as the number of
those for which ts = 5 and exp = 7. Given this definition, the initial sub-index sizes of a 2x2
chronologically partitioned index are as follows.

e In [y, tuples with ts = 1 can only have exp = 1, therefore there is one unit of them. Tuples

with ts = 2 can have exp = 1 or exp = 2, therefore there are two units of results with

ts = 2. Continuing to &, there are £ units of tuples with ts = £. The total size of I; is

pcp
therefore 14+ 2 + ...+ g = —2(2;'1)'

e [5 is empty at this time.
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e In I3, tuples with ¢ts = £ 4+ 1 can have exp = 1 up to exp = &, therefore there are & units
of them. The situation is similar for tuples with all the other ts values up to £, therefore

2
i i PP _ P
the size of I3 is ££ = E-.

e By the same reasoning as for I, the size of I is the same as I, at @

At all times, the total size of the result is 1 + 2 4 ... 4+ p (because there is one possible
exp range for ts = 1, two possible exp ranges for ts = 2, and so on), which is %. This is
equivalent to adding up the sizes of Iy, I, I3, and I, from above. Now, for the next & updates,
I; and Is incur insertions and some deletions, whereas I3 and I incur only deletions. After that,
during the next & updates, the process repeats, with the exception that I; and I only incur
deletions and I3 and Iy are also inserted into. Thus, there is a repeating sequence of £ distinct
steps, during which the sub-indices evolve in size. This sequence may be derived by considering
the sub-index sizes at each step, using the same procedure as above. Letting (|I1], |I2|, |I3], | 14])
be the sizes of the four sub-indices at each of the & steps, the sequence of sizes is as follows.

2 2 2 2 2

That is, the sizes of I and I do not change, whereas I gains § and I3 loses & after each of the
£ updates. After £ + 1 updates, the sub-index sizes are the same as in the first element of the

sequence, with the exception that the size of Iy is % and the size of I3 is zero.
A similar analysis may be carried out for a 2x2 round-robin index. For instance, we can
characterize the index in Figure 4 as follows.

e [ stores results with ts ranges of 1,3,...,p — 1 and exp ranges of 1,3,...,p— 1.
e [, stores results with ¢s ranges of 1,3,...,p — 1 and exp ranges of 2,4, ..., p.

e [3 stores results with ¢s ranges of 2,4,...,p and exp ranges of 1,3,...,p— 1.

e [, stores results with ts ranges of 2,4, ..., p and exp ranges of 2,4, ..., p.

The initial sub-index sizes of a 2x2 round-robin index are as follows.

e In [y, tuples with ts = 1 can only have exp = 1, therefore there is one unit of them. Tuples
with ts = 3 can have exp = 1 or exp = 3, therefore there are two units of results with

ts = 3. Continuing to p — 1, the possible exp values are 1,3,...,p — 1, therefore there are
pcp
£ units of tuples with ts = p — 1. The total size of I; is 1 +2+...+ § = @

e In I, there are no tuples with ts = 1 because the smallest possible exp value is 2. Tuples
with ts = 3 can only have exp = 2, therefore there is one unit of them. Tuples with ts =5
can have exp = 2 or exp = 4, therefore there are two units of them. Continuing to p — 1,
the possible ts values are 2,4,...,p — 2, therefore there are & — 1 units of tuples with

P_1\2
ts=p—1. Thetotalsizeof[zisl—|—2—|—...—|—§—1:%.
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e In I3, tuples with ts = 2 can only have exp = 1, therefore there is one unit of them. Tuples
with ts = 4 can have exp = 1 or exp = 3, therefore there are two units of them. The rest
of the analysis is similar to that of I, therefore the size of I3 is the same as the size of Iy,

b(p
L(E+1)
2\2

at 5—.

pcp
e By the same reasoning as for I, the size of I is the same as I, at #

In round-robin partitioning, the sequence of sizes only has the following two states.

§5+1) -8 §G+D 534D (BE+D 5G4 G- BB+
2 ’ 2 ’ 2 ’ 2 ’ 2 ’ 2 ’ 2 ’ 2

In fact, the two states are equivalent if we ignore the ordering within them, which is not signifi-
cant in terms of calculating the variance in sub-index sizes. Thus, there is only one distinct set
pcp
of sub-index sizes, in which three sub-indices have sizes of # and one sub-index has a size
(2-1)%
Of %

Generalization

Generalizing our discussion so far to all values of n is straightforward. First, we only consider
symmetric splits with y/n upper-level and \/n lower-level partitions. We also require that each
sub-index span at least two refresh intervals (otherwise, each sub-index would store tuples with
one particular ts range and one particular exp range, and there would be no difference between
chronological partitioning and round-robin partitioning). Thus, we require p > /n, meaning
that the smallest value that p can take is 2y/n (in which case, each sub-index spans a time of
two refresh intervals of the insertion and generation times).

First, we generalize chronological partitioning. The sequence of sub-index sizes now has

Sk

steps, during which the same sub-indices incur insertions. The sub-indices have the followi
sizes.

=

g

L (1
e There are y/n sub-indices whose sizes are always 1 +2+ ...+ % = M

e Of the remaining n — y/n sub-indices, half begin with size zero and half begin with size
(%)(%) = %. After each of the \/iﬁ updates, the former grow by \/iﬁ and the latter
decrease by \%.

Next, to generalize round-robin partitioning, note that the sequence of sizes now has /n
steps, corresponding to applying one update to each of the insertion time partitions. It turns
out that the following invariant always holds.

L (41
e At any time, there are M sub-indices with size 1 +2 + ...+ \% = ﬁ(éﬁ ) and
P__ 1)
the remaining n — M sub-indices have size 1 +2 + ...+ \% —1= M
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Calculating the Variance of Sub-Index Sizes

Having derived the sequences of possible sub-index sizes, we can now calculate their average

variance. Recall that the entire index is expected to have size %. Thus, the mean sub-index
size is p = %. Let varggr and varcp, be the average variance of the sub-index sizes for

round-robin and chronological partitioning, respectively. That is, we sum up the variance of
each possible set of sub-index sizes, and take the average. We begin with vargg, which is simple
to calculate due to the above invariant. We have

2 2
Va1 [vEEE+ i+ 1) [~ D
VarrRr = 5 9 —p| +(n— 5 ) 5 — |-
After some algebraic simplification, we get
2
1
VArRR = p—(l - —).
4 n

To obtain varcyp,, we add up the variance of the y/n sub-indices whose size does not change,
and average the possible sizes of the remaining sub-indices. We get

(&) 1 a | (neym) o i
_ Vi y/n vhn LL_Z — )2 P2
varcm«—\/ﬁl 5 -l-p < 5 ) ; ((\/ﬁ(\/ﬁ ) — 1) +(\/ﬁ #))

The summation iterates over all the possible sizes of the sub-indices whose sizes change. After
expansion of the sum and algebraic simplification, we get

I L
T 12y 4n ' 12n 12nvn

2
p
—1-6.

Proving the Theorem

We are now ready to prove Theorem 1. Let d(n,p) = varcp, — varggr. By substituting the
above expressions and by algebraic simplification, we get

d(np): p2 +£_p74_i'
’ 12/n 120 12nyn 12
By taking the first derivative of d with respect to p and setting %Z’p) = 0, we find that

d(n, p) is monotonically increasing for all values of p such that p > 4\/5 Since we assumed
that, p > 2y/n (each sub-index must span at least two refresh intervals), the smallest value that
d(n,p) can take is d(n,2y/n) = n — y/n. Since n — y/n is always positive for n > 4 (a two-level
index has at least four sub-indices), we conclude that the difference in the average sub-index
variance of chronological partitioning versus round-robin partitioning is always positive. This
completes the proof. O
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Appendix B

This section contains algorithms for the proposed variants of doubly partitioned indices. For
convenience, we repeat the definitions of all the variables that are used in the algorithms: n is
the number of sub-indices, G is the number of partitions of generation times, E is the number
of partitions of expiration times, r is the time interval between two consecutive updates, p is
the number of times that a window is updated until it rolls over completely, and S is the size of
the shortest window in units of time (for queries over count-based windows, S is the estimated
size of the shortest window, that is, the minimum over all the windows of the number of tuples
divided by the steady-state stream arrival rate). Additionally, in the context of queries over
count-based windows, we define R to be the range of expiration times that is guaranteed to
contain all the expired tuples (recall Section 4.2).

All algorithms contain two stages: the initial stage and the periodic update stage. Suppose
that we want to materialize a (sub)result of some query at some time 7. We assume that all the
windows referenced by the query are full at time 7. In the initial stage, we make a partitioning
of the generation and expiration times, and insert the initial results of the query into the appro-
priate sub-indices. In the update stage, we periodically access some of the sub-indices to adjust
the insertion and expiration times that they span, and to insert or delete tuples as appropriate
(using the ts and exp values of the result tuples). A detailed implementation of insertions and
deletions is not included in the algorithms because that depends on the clustering technique
(e.g., Rebuild versus NoRebuild). The chronological doubly partitioned index is shown in Algo-
rithm 1, Rebuild and NoRebuild are shown in Algorithm 2, LazyRebuild and LazyNoRebuild are
shown in Algorithm 3, and CountRebuild and CountNoRebuild are shown in Algorithm 4.

Algorithm 1 Chronological doubly partitioned index

Initial stage at time 7

1 forj=0toG—-1

2 I;p41 through I(; 1 g are assigned insertion time range of 7 — 5 + j% +1
tor—S+(j+1)2

for j=0to £ —1
Livi,Igyj+1,- -+, [(G-1)E+j+1 are assigned expiration time range of T —I—j% +1
tor+(j+1)2

5 Insert initial result tuples to appropriate sub-indices

=W

Periodic update stage at time 7+ jr, j = 1,2, ...

1 for each sub-index with expiration time range of 7+ (j — 1)r + 1 to 7 + jr

2 Replace above range with 7+ (j — )r+1+ S to7+ jr+ S
Delete tuples with expiration times of 7+ (5 — 1)r + 1 to 7 + jr

for each sub-index with insertion time range of 7+ (j — 1)r+1—S to 7+ jr— S
Replace above range with 7+ (j — 1)r + 1 to 7 + jr
Insert new result tuples to appropriate sub-indices

S O W

31



Algorithm 2 Round-robin doubly partitioned index (Rebuild or NoRebuild)

Initial stage at time 7
1 fori=0to % —1
2 for j=0toG -1
3 Ijp 41 through [(;,1)p are assigned insertion time range of 7 — S + (iG + j)r + 1
tor—S+(GEG+j+1)r

fori=0to & —1

for j=0to £ —1
6 Iiv1, Ig+j+1, - - [(G—1)E+j4+1 are assigned expiration time range of

T+ S+ (iG+j)r+1tor+8+ (GG+j+ 1)r

7 Insert initial result tuples to appropriate sub-indices

(G BTSN

Periodic update stage at time 7+ jr, j = 1,2, ...

1 for each sub-index with expiration time range of 7+ (j — 1)r + 1 to 7 + jr

2 Replace above range with 7+ (j — )r+1+ S to7+ jr+ S
Delete tuples with expiration times of 7+ (5 — 1)r + 1 to 7 + jr

for each sub-index with insertion time range of 7+ (j — 1)r+1—S to7+jr— S
Replace above range with 7+ (j — 1)r + 1 to 7 + jr
Insert new result tuples to appropriate sub-indices

S Ot W
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Algorithm 3 LazyRebuild or LazyNoRebuild

Initial stage at time 7

0 O U = W N

9

for j=1to(p—1)mod (n—1)
I; is assigned insertion time range of 7 — S+ (j — 1) [fl;_ﬂr +1ltorT -8 —I—j[fl;_ﬂr
forj=(p—1)mod (n—1)+1ton—1
I; is assigned insertion time range of 7 — S+ (j — 1) LZ;_HT +1ltorT -5 —I—ijL;_ﬂr
I, is assigned insertion time range of 7 —r 4+ 1 to 7.
fori=0to & —1
for j=0to £ —1
Iiv1, Ig+j+1, - - [(G—1)E+j4+1 are assigned expiration time range of
T+ S+ GG+ )r+1tor+ S+ (iG+j+1)r
Insert initial result tuples to appropriate sub-indices

Periodic update stage at time 7+ jr, j = 1,2, ...

1

Let J be the set of all sub-indices whose expiration time range does not overlap with
T+ —1Drtor+jr
Let K be the set of all sub-indices whose insertion time range includes
T+(G—-1r—Stor+jr—S
Let L be the set of all sub-indices whose insertion time range includes
T+(G—-2)r+1tor+(j—1)r
if J is empty
for each sub-index I, with expiration time range of 7+ (j — 1)r + 1 to 7 + jr
Replace above range with 7+ (j — )r+1+ S to7+ jr+ S
if I, is not in K
Delete tuples with expiration times of 7+ (5 — 1)r + 1 to 7 + jr
for each sub-index in L
Assign insertion time range of 7+ (j — 1)r + 1 to 7 + jr
Insert new result tuples to appropriate sub-indices
else
for each sub-index I, with expiration time range of 7+ (5 — 1)r + 1 to 7 + jr
Replace above range with 7+ (j — )r+1+ S to7+ jr+ S
if I, is not in L
Delete tuples with expiration times of 7+ (5 — 1)r + 1 to 7 + jr
for each sub-index in L
Remove all insertion time ranges and assign range 7+ (j — 1)r + 1 to 7 + jr
Remove all results
Insert new result tuples to appropriate sub-indices in L
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Algorithm 4 Doubly partitioned index for queries over count-based windows ( CountRebuild or
CountNoRebuild)

Initial stage at time 7

1 fori=0to & —1

2 for j=0toG -1

3 Ijp 41 through I(;,1)p are assigned insertion time range of 7 — S + (iG + j)r + 1

tor =S+ (GG+j+1)r

for j=0to £ —1
Iiv1, IE+j+1, - -  [(G—1)E+j+1 are assigned expiration time range of 7 —I—j% +1
tor+(j+1)2

6 Insert initial result tuples to appropriate sub-indices

[SARN

Periodic update stage at time 7+ jr, j = 1,2, ...

1 for each sub-index with expiration time range 7+ (j — 1)r + 1 to 7 + jr

2 Replace above range with 7+ (j — )r+1+ S to7+ jr+ S

3 for each sub-index with expiration time range containing range R

4 Examine all tuples for expiration and delete tuples that have expired

5 for each sub-index with insertion time range of 7+ (j — 1)r+1—-Sto 7+ jr— S
6 Replace above range with 7+ (j — 1)r + 1 to 7 + jr
7 Insert new result tuples to appropriate sub-indices
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