
A Scalable, Available Storage Tier for RDBMS

Ashraf Aboulnaga
Rui Liu

Ken Salem

David R. Cheriton School of Computer Science
University of Waterloo

2 Nov 2011



Objective

• multi-tenant relational database management service with
• elastic scalability of storage capacity, performance, tenancy
• no down time
• transactions
• SQL

• starting points
• established relational DBMS, e.g., MySQL
• “NoSQL” systems, e.g., HBase, Cassandra



Our Approach



Benefits

• what we get:
• scalable, elastic storage capacity and bandwidth
• scalable, elastic tenancy
• highly available storage tier, including disaster tolerance
• transactions
• SQL

• what we don’t:
• scaling of individual hosted DBMS tenants

• but existing techniques can be applied
• always-up hosted DBMS

• but always-up storage tier might simplify DBMS
high-availability



DBECS

• we use
• MySQL as the hosted DBMS (but most will do)
• Cassandra, an eventually consistent storage tier

• why Cassandra?
• multi-master replication

• multiple data centers
• partition tolerance

• fine-grained (per-operation) control of
consistency/performance tradeoff

• client-controlled update serialization



A Cassandra Primer

• stores “column families”, tables of semi-structured records,
accessed by key

• records replicated and distributed by hashing keys
• primitive operations are reading a field from a record,

update a field in a record
• per-operation consistency specification:

• write(1) vs. write(ALL)
• read(1) vs. read(ALL)

• scalable and available



Latency vs. Consistency in Cassandra

one EC2 availability zone



Latency vs. Consistency in Cassandra

two availability zones, one region



Latency vs. Consistency in Cassandra

two EC2 regions (US East, US West)



Cassandra as a DBMS Storage Tier

• DBMS block per Cassandra
record

• keyed by block ID
• CassandraI/O layer maps DBMS

block requests to Cassandra
read and write



Reading and Writing Data

• which consistency level should CassandraI/O use for each
Cassandra read and write?
read(1),write(1):

fastest, but stale reads make DBMS very
unhappy

read(ALL),write(1):
no stale reads, but slow reads and potential
availability threat

read(1), write(ALL):
no stale reads, but slow writes

• can we approach the performance of read(1),write(1)
while avoiding stale reads?



Optimisitic I/O
• observation: though Cassandra only guarantees eventual

consistency, most reads see current data (why?)
• we can exploit this using an optimistic read/write protocol:

• DBMS block write→ Cassandra write(1)
• DBMS block read→ Cassandra read(1), but check for

stale data and recover if necessary
• how to check for stale data?

• CassandraI/O stores a version number with each page, and
remembers current version

• on read, check version number of retrieved page against
known current version

• how to recover from stale read?
• aggressive: retry read(1)
• conservative: read(ALL)

• optimization: remember version numbers for frequently
read pages only, use read(ALL) to read others



Cassandra Failures

• Cassandra will detect and recover from node failures
• are Cassandra failures transparent to hosted DBMS?

• Optimistic I/O uses write(1). Is the update really safe?
• Optimistic I/O sometimes uses read(ALL). This will block if

any replica is down.

• we use client-controlled synchronization for better
tolerance of Cassandra failures



Client-Controlled Synchronization

• DBMS (via CassandraI/O) uses write(1) plus new
Cassandra CSync() operation

• CSync() ack means previous unsynchronized writes are
performed on at least a quorum of replicas

• any delay between write(1) and CSync() allows
synchronization latency hiding

• we can use read(QUORUM) instead of read(ALL) to read
synchronized writes (better availability)

• DBMS is used to explicit synchronization (the file system
made me do it!)



Does it Work?



Scalability



Cassandra Node Failure


