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You know Big Data is an
important problem if...
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* |tis featured on the cover of Nature and the Economist!
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You know Big Data is an even
more important problem if...

CONSULTANTS SAY
THREE QUINTILLION
BYTES OF DATA ARE
| CREATED EVERY DAY,

IT COMES FROM
EVERYWHERE. IT
KNOWS ALL.

ACCORDING TO THE

BOOK OF WIKIPEDIA,

ITS NAME IS "BIG
DATA."

BIG DATA LIVES
IN THE CLOUD. IT
KNOWS WHAT WE

DO.
Al

CIN Dol ABewe, Bui T by

IN THE PAST, OUR
COMPANY DID MANY
EVIL THINGS.

BUT IF WE ACCEPT
BIG DATA IN OUR
SERVERS, WE WILL
BE SAVED FROM
BANKRUPTCY.

ISIT TOO
LATE TO SHHHH!
SIDE WITH [ 1T HEARS

EVIL?

* |t has a Dilbert cartoon!



What is Big Data?

Definition #1:

« Big data is like feenage sex:
o everyone talks about i,
o nobody really knows how to do i,
o everyone thinks everyone else is doing it,
o SO everyone claims they are doing if...

Definition #2:
« Anything that Won't Fit in Excel!

Definition #3:
« Using the Vs



The three Vs
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* Volume - size does matterl!
« Velocity - data atf speed, i.e., the data "fire-hose™

« Variety - heterogeneity is the rule



Five more Vs

Variability - rapid change of data characteristics
over time

Veracity - ability fo handle uncertainty,
Inconsistency, etfc

Visibility — protect privacy and provide security

Value - usefulness & ability to find the right-needle
INn the stack

Voracity - strong appetite for data!



Enter Moore's Law

Microprocessor Transistor Counts 1971-2011 & Moore’s Law
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Storage capacity increase
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But

— Human Processing Capacity
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roughly the samel




We refer to this as the:

Big Data — Same Humans

Problem
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About the ADMT Lab

® Directed by
® Panos K. Chrysanthis

® Alexandros Labrinidis

® Established in 1995
® 412 PhD students, 2 MS students, 6 REUs

® llser-centric data management for network-centric
applications
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Entire Data Lifecycle

Web Data Management

= e
;a/
T~
& Q 2

v v,
Data Stream Processing Data Dissemination
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AstroShelf VIS

Understanding the Universe through scalable
navigation of a galaxy of annotations

5 om P e

Astronomy data from multiple sources (images &
catalogs)

Support collaboration of:

> people (view-based, declarative annotations)
> software / data (web services)

> resources (utilizing local and remote storage)

CONFLuENCE prototype: continuous workflows
[Sigmod 2011 & 2012]




AstroShelf (cont.) V" Wiy

e User-centric features:

0 SELECT * FROM Plants, Supplies, Polluted_H2O
; WHERE Supplies.type = "solvent”
AND Supplies.name = Polluted_H2O.pollutant
0. 0. AND Polluted_H?20O.location = Plants.location
\ AND Plant.id = Supplies.plant_id
0.2 PREFERRING $1 = Querier HOLDS
OVER <*,{(pollutant)},$1>
1 like drama movies a bit more than CASCADE LESSTHAN (runtime, 120)

horror movies, Intensity of preference 0.2” AND $1 = Querier HOLDS OVER <join,*,$1>;

« Unified model for user preferences

%
» combine quanfitative & qualitative user preferences a
info a single graph model to guide query result
personalization

* Protecting privacy in distributed query processing

» declarative preferences allow users to balance the
tradeoff between privacy and performance




AQSIOS

Volume Velocity
Variability

 Efficiently Utilizihng Resource in a Data Stream
Management System

CPU time sharing:

e Which operator to
execute now?

e And for how long?

Data streams

Which query plans
are the best?

What if the system is
overloaded?

» Shed data to meet the
near-real-time requirement

>
>

> .1'

Scheduler Load manager
ﬁguery networks I
i
Csel F—Cprj) age
sel join pIj
o J

T

| Registering CQs

°F

Stream applications

Multiple classes of CQs

w » Each class has a different priority
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A Q SI O S VOIHH\}griabﬂX;IOCity

* Prototype Data Stream Management Systems
o Aggregate Continuous Query optimizer -
 WeaveShare and TriWeave I
[Shenoda et al.,, CIKM'11T and ICDE’12]
o Optimized processing to eliminate redundant computation

o Continuous Query Schedulers
 HR, HNR [Sharaf et al., VLDB'06 and TODS'08]
o Average vs Max Response Time

o Average vs Max Slowdown
« CQC and ABD [Al Moakar et al., DMSN'09 and SMDB'12]
o Priority Classes

o Single-, Dual-, Multi-core, Cloud
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AQSIOS (COnt.) Volume  Velocity

Variability

 Load shedder and scheduler-load shedder synergy

o SEOMLESS [Pham et al., SMDB'13]

- SEIf Managing Load Shedding for data e
Stream management systems

o DILOS [Pham et al., SMDB'11]

« Seamless integration of priority-based scheduler
and load shedder

« Consistently honor worst-case delay target with
differentiated classes of service

« Exploit system capacity better
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System Model & Metrics

« Multiple priority classes of CQs

o Priorities have been quantified info numbers
« Higher value means higher priority

« Two requirements under overload stafe:

. Guarantee worst-case Quality of service (QoS)
« Worst-case QoS = worst-case response time = delay target
« Each class can require a different worst-case QoS
« Supported by load manager (load shedder)

2. Maximize Quality of Data (QoD) with priority consideration
« QoD = 100% - data loss due to shedding
* Need to consider priorities of CQ classes
* Involve both scheduler and load manager - Why?

20



State-of-the-art

Previous works consider either...

o Priority-based scheduling

« CQ’s priority (through QoS function, deadline): e.qg.,
[Carney et al., VLDB'03], [Wei et al.,, ISORC’ 06]

« Class’ priority: [Al Moakar et al., DMSN'09, SMDB'12]

o Or priority-based load shedding
« CQ’s loss-tolerance functions [Tatbul et al., VLDB'03]

Now we need both of them ?

to work together ...
©
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Motivation

Two CQs Q-| and Qz
o The same cost
o Q,’s priority is twice as high as Q,'s

Q;: 9 tuples/s Q,: 9 tuples/s

Input rate [0
Scheduler T s

Load manager: .

-2 Q, is still overloaded

- Q, suffers from unnecessary shedding

—> System capacity is not fully used
22



Motivation

Making the load manager aware of the scheduler’s
policye

o Load manager: | should know that the scheduler can
process up to 10 tuples of Q, and 5 fuples of Q, and...

o Scheduler: well, all | can tell you is in this cycle | am
giving Q, x% of fime to execute and Q, y7% and..., also
many things out of my control

« Context switching time
« Background jobs that share the CPU resource

 The actual query load

A
®<

&>

o Load manager:

1
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Our Hypothesis

* By exploiting the synergy between the
scheduler and the load shedder we can

o Support CQ’s priority consistently

o Improve the utilization of CPU resource

24



Our solution: DIL0S framework

2-level scheduler
(e.g., [Al Moakar
SMDB’09])

Per-class
load manager

supply

budget =Zsupply;

11

distributing budget

i } demand

Global scheduler
v v v
Local sched. 1 Local sched. 2 Local sched. k
v v v
Class 1 Class 2 Class k
v 1 v 1 v 1

Load manager 1

Load manager 2

Load manager k

Capacity usage

25



Benefit of our proposed DILoS framework

« The load manager works in concert with the
scheduler in honoring CQs’ priority

o The load manager does not needs to have its own priority-
based policy

« Controls the load in each class as if it is a virtual system

» Follows exactly the priority enforcement of the scheduler

« Load manager’s feedback improves scheduler’s
decision

o Beftter exploits system capacity

26
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Load manager for DILoS

« Each class load manager needs 1o decide
“when and how much load to shed”

o Estimate the load of each class

» [Tatbul et al., 2003], based on input rates, operator’s
cost and selectivities

o Estimate the system capacity each class actually has
. 227
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“When and how much”- related definitions

* Incoming load L

o The amount of time needed to process all the tuples
coming in per time unit (say, a second)

« System capacity Le:
o The fraction of each time unit the system can spend on
processing the incoming fuples

o Approximated by a headroom factor H in [O-1]

« Qverload:
o whenl> L.

2%



“wWhen and how much” state-of-the-art

Aurora [Tatbul et al., 2003]
o Excessload = L-L

o No feedback loop, cannot honor delay target

CTRL [Tu et al., 2006]

o Based on number of queued tuples to adjust shedding
decisions

o Honors delay target, outperforms Aurora

Both require manually tuned headroom factor H to
estimate the system capacity!

o Offline, manual tuning of H is impractical

o Clearly not applicable in this context of per-class load
manager!
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Our Proposal: ALoMa — Adaptive Load Manager

« Starts with some reasonable value of H, and adjusts
it accordingly

« Has two modules:

o Statistics—based load monitor: estimates the system load
based on input rate, operators’ costs and selectivities

o Response time monitor: monitors the level and moving
frend of the acfual response fime to infer about the system
load status

31



ALoMa- Headroom Factor Adjustment

The two modules disagree: adjust H

o The load monitor says “overloaded” but the response time
monitor says “not overloaded":

* Increase H so that L. is increased towards L

o The load monitor says “not overloaded” but the response
time monitor says “overloaded”

« Decrease H so that L. is reduced fowards L

The two modules agree: excessload =L - L

32



ALoMa - Headroom Factor Adjustment

« We use heuristic in the adjustment of H (or L)

o Accommodating system fluctuation and the inherent lag
of the stafistics

I 1
Loy, = Lot 220U g
[L-Lc| ¢ |L—Lc|
where z = 7 —-100 it Lo 100 > 1
1 otherwise

o Principle: bigger the difference, smaller the % of change
but bigger in absolute value of change
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Al.oMa — Performance Evaluation
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Effect of environment changes on CITRL [Tu et al.] and adaptation of ALoMa.

Total data loss for ALoMa and CTRL is 62.98% and 62.69%, respectively
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ALoMa

 We showed how ALoMa can automatically
recognize the system capacity spent on query
processing

 ALoMa’s other important advantages over the
state-of-the-art

Ideal properties CTRL

Aware of delay target

Auto-adjusting of H v
Applicable to all query networks v
Independent of scheduler v
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Back to DILoS Framework

Capacity distribution Class’ capacity usage
policy
ALoMa1l ALoMa k ALoMa N
Local Local Local
(operator) .. (operator) . (operator)
scheduler 1 Scheduler k scheduler N
Class 1 Class k Class N

37



Scheduling Policy

« A concrete policy implemented:
N
o A class with priority P, is guaranteed a share of Pk/EPI.
of total system processing capacity if needed. =l

« Adopted from CQC [Al Moakar et al., 2009]

o Redundant capacity from a class is distributed to other classes
in need with “highest priority first”

 Different policies can be plugged in, for example:
o Absolute priority for higher-priority class:
« Higher class can use as much of the available capacity as needed
o Relative priority with workload consideration

« Higher class receives better QoD regardless of its workload
38



Inter-class Sharing

« Congestion can happen when a higher-priority class
share a query segment with a lower-priority one under

class-based scheduling

@ss 1 (local scheduler 1 and load manager ALoMam
O > ) > )—>Q11
O—>»()— >Q—>Q12
O T@—*Q“

\

O‘> Qk1
® 00— %
KClass k (local scheduler k and load manager ALoMa-?

* The shared segment receives the
higher-priority as it should

* However, the higher-priority class is
blocked waiting for the lower priority
one to consume the intermediate result

—> DILoS naturally provides a solution,
enabling inter-class operator sharing

Claim: As long as the load of the lower-
priority class is controlled to its capacity,
congestion will not happen
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Experiments

Experimental Settings
« AQSIOS DSMS prototype

 Three classes 1, 2, 3 of priorities 6, 3, 1; 6 is the highest
« All classes have the same workload of 11 queries
 Worst-case QoS of class 1, 2, 3is 300, 400, 500 ms

* |nputrate:
o Constant, step changes, and real input trace for class 1

o Constant input rate for class 2 and 3, at a level that would
overload the classes within its assigned capacity.

40



Result with Constant Input Rate

Average response time (ms)

Average data loss (%)

Class 1

Class 2

Class 3

Class 1

Class 2

Class 3

No load manager

3.40

3.53

56541.69

0

0

0
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Understand the Benefit of the Synergy

Implicit redistribution observed without explicit synergy
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- Better capacity usage by exploiting batch processing!

Data loss:

e (Class1:0%
e (Class2:0%
e (Class 3: 0%
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Enabling inter-class sharing

Class 1 shares a query segment with class 3 under a class-based
scheduling policy (CQC [Al Moakar et al., 2011]) (constant input rate)
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Result with Step Changes in Class 1’s Input Rate
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Result with Step Changes in Class 1’s Input Rate

drop percentage (%) headroom factor

input rate (tuples/sec)
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Result with Real Input Rate for Class 1
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The real input is the trace of TCP packages to and from The Berkeley Lab

(http://ita.ee.lbl.gov/html/contrib/LBL- PKT.html)



Result with Real Input Rate for Class 1’s

Average response time (ms)

Average data loss (%)

Class1 | Class2 | Class3 Class1 | Class2 | Class3
No synergy (& no sharing) | 22.31 68.23 300.91 0.01 0.79 21.67
DILoS without sharing 25.69 76.86 122.66 0.46 0.68 8.70
DILoS with sharing 25.03 70.29 127.28 0.44 0.82 6.54
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Conclusions

Advantages of DILOS: Volume  Velocity
: : Variability
o Seamless integration:

 The load manager detects and follows exactly the current priority
enforcement of the global scheduler

o Global scheduling decision improved
« Explicitly control the distribution of available capacity
» Exploit batch processing 1o increase capacity utilization

« Enable inter-class sharing to maximize the chance for query
optimization

o Different priority policies can be plugged in

Future works:

o Synergy with priority-based memory management
o Consider advanced architecture (multi-core, cloud)
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