I DON’T WANT TO BE THE MITT ROMNEY OF DATABASES

@andy_pavlo
I'm not concerned about the very poor.

Mitt Romney – Feb 1st 2012
Figure 1: Examples of database systems for the “one percent.”
Figure 2: Throughput of three DBMSs for the single-node Voter benchmark with 100% single-partition transactions.
Figure 3: Cost and management burdens when using a specialized OLTP database system.
99%
Apple Acquires Durable Database Company FoundationDB

Posted Mar 24, 2015 by Matthew Panzarino (@epanzer)

Apple has acquired FoundationDB, a company that specializes in speedy, durable NoSQL databases, TechCrunch has learned.
The company I'm working for is looking for a way to scale our DB-layer. Anyway, FoundationDB was more or less the only candidate against MySQL. Does anyone know of any good (and proven) alternatives to FoundationDB?

It's funny you mention that.. but actually hiring a part-time PostgreSQL DBA is all but impossible, I reached out to most of the support companies listed on the north american website... mainly I wanted for someone to setup a small (3-node) replica set of the most recent version of postgres with plv8 some sane backup scripts and pretty much nobody replied... EnterpriseDB won't talk to you without laying out at least $10k to start, and I would rather pay a person (or small company) I can call that to get things running... more if it kept running well.
Figure 4: The design goals of a database management system for the 99%.
Data & Execution Model
Figure 5: The database system chooses different data distribution models based on the perceived workload type.
Figure 6: Tile-based storage architecture where relations are split into disjoint column blocks.
Figure 7: Dynamically reorganizing the physical layout of tuples based on the application’s access patterns.
Figure 8: Modular query engine that supports interpretation, SIMD execution, and LLVM-based plan compilation.
Automatic Optimization + Tuning
Figure 9: An illustration of a database performance metric time-series.
Figure 10: Using predictive analytics in OLTP workloads to speculatively execute queries on remote nodes.
Figure 11: A DBMS process controller based on the receding horizon model with scenario-based planning.
Figure 12: Automatic database system configuration tuning using the OLTP-Bench framework.
Figure 12: Automatic database system configuration tuning using the OLTP-Bench framework.
Larger-than-Memory Storage
Figure 13: New data is first stored in DRAM and then is migrated to the disk-resident anti-cache over time.
Figure 14: TPC-C throughput of H-Store with anti-caching versus MySQL for different database sizes.
Figure 15: Extending the DBMS’s address space with NVM. The execution engine treats tuples the same regardless of whether they reside in DRAM or NVM.
Figure 16: Comparison of storage managers executing a YCSB workload. The NVM-optimized engines use byte-addressable persistent data structures.
Peloton
END
@andy_pavlo