Improving Understanding and Exploration of Data by Non-Database Experts

Rachel Pottinger
University of British Columbia

Joint work with lots of great students, including Zainab Zolaktaf, Reza Babanezhad, Jian Xu, Omar AlOmeir, and Janik Andreas
Exploring and understanding data

• More users have more data
• This is particularly challenging for users without much database background
• I like to work with data and users who have real world problems. Then I extend to a more general scenario.
• How can we help users with little database expertise to understand and explore their data?
Exploring and understanding data

- **Exploration**: recommend items beyond the popular items in recommender systems
- **Understand**: help users understand the range of possible answers in data aggregated from multiple sources
- **Exploration and understanding**: Ongoing work on exploring and understanding
Exploration: Recommend long tail items
(joint with Zainab Zolaktaf and Reza Babanezhad)

- Standard recommender systems algorithms tend to emphasize popular items
- This tends to cause recommendation consumers to only find things they already know
- But most items are “long tail”
- Presented at ICDE (International Conference on Data Engineering) last week
Motivating Example

Top-N recommendation

Recommend to each user a set of N items from a large collection of items

Used in Netflix, Amazon, IMDB, etc.

Problem

Tend to recommend things users are already aware of

E.g., Suggests “Star Wars: The Force Awakens” to users who have seen “Star Wars: Rogue One”
Motivating Example

Many recommendation systems
Take as input a set of users and their ratings (e.g., ratings on movies)
Focus on accurately predicting user preferences based on history
Use a subset of data as “gold standard”

Interaction data often suffers from popularity bias and sparsity
Have to recommend popular items to maintain performance accuracy
Rich get richer effect

Accuracy alone is not leading to effective suggestions?

Rachel Pottinger
http://www.cs.ubc.ca/~rap
Why long-tail items matter

Consumers want

Accuracy
Novelty
...

Providers of items want

Keep consumers happy
Item-space coverage
Generates revenue
...

Less focus on popular items

\[\text{Pareto principle (80/20 rule)}\]

\[\text{Long-tail items} \]

- Generate the lower 20% of the observations
- Empirically validated: Correspond to almost 85% of the items in several datasets
Selected related work

- **Accuracy Focused**

- **Re-ranking frameworks**

- **Evaluation of top-N recommendation**
Challenges: Accuracy, novelty, and coverage trade-offs

- Promoting long-tail item can increase novelty [Ste11]
 - Long-tail items are more likely to be unseen
- Promoting long-tail items increases coverage [Ste11]
 - Generates revenue for providers of items
- Long-tail promotion can reduce accuracy [Ste11]

Not all users receptive of long-tail items
Challenges: Recommendation system evaluation

Need to assess multiple aspects
 Accuracy, novelty, and coverage
 No single measure that combines all aspects. Report trade-offs?

Need to consider real-world settings
 Datasets are sparse
 Users provide little feedback

Test ranking protocols [Ste13, CKT10]
 Do not reward popularity-biased algorithms
 Offline accuracy should be close to what user experiences in real-world
Solution overview: GANC

A Generic top-N recommendation framework that provides customized balanced between Accuracy, Novelty, and Coverage

Objective: Assign top-N sets to all users

Find \(\mathcal{P} = \{ \mathcal{P}_u \}_{u=1}^{\mathcal{U}} \), the collection of top-N sets to maximize

\[
v(P) = \sum_u v_u(P_u)
= \sum_u (1 - \theta_u) a(P_u) + \theta_u c(P_u)
= \sum_u (1 - \theta_u) \sum_{i \in P_u} a(i) + \theta_u \sum_{i \in P_u} c(i)
\]
Solution overview: GANC

Main features of our solution

1. Directly infer user long-tail novelty preference θ_u from interaction data
 Customize trade-off parameters per user
2. Integrate θ_u into a generic re-ranking framework
 - θ_u independent of any base recommender
 - Plugin a suitable base recommender w.r.t. factors such as dataset density

Rachel Pottinger
http://www.cs.ubc.ca/~rap
Long-tail novelty preference model (θ_u)

We created and evaluated 4 long-tail novelty preference models:

1. **Activity**
 - Number observations in the train set (e.g., number of rated items)
 - Does not distinguish between long-tail and popular items

2. **Normalized long-tail measure**
 - Ratio of long-tail items rated in train set
 - Does not consider if user liked item

3. **TFIDF-Measure**
 - Incorporates rating and popularity of items
 - Does not consider view of other users

4. **Generalized measure**
 - Optimization approach
 - Incorporates rating information, popularity of items, and view of other users

Accuracy

Novelty

Coverage

We created and evaluated 4 long-tail novelty preference models.
GANC: Accuracy recommenders

- Focuses on making accurate suggestions
- Evaluated existing models from literature
 - PureSVD [CKT10]
 - Regularized SVD [KBV09]
 - Most Popular [CKT10]
GANC: Coverage recommenders

- Focus on increasing coverage
 - Random coverage recommender
 - Static coverage recommender
 - Consider how many times the item was rated in the past
 - Gain of recommending an item is proportionate to the inverse of its frequency in train set
 - Dynamic coverage recommender
 - Consider how many times item has been recommended so far
 - Gain of recommending an item is proportionate to the inverse of item recommendation frequency
Empirical Evaluation

<table>
<thead>
<tr>
<th>Dataset</th>
<th>#Ratings</th>
<th>#Users</th>
<th>#Items</th>
<th>Density</th>
<th>Long-Tail %</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML-100K</td>
<td>100K</td>
<td>943</td>
<td>1682</td>
<td>6.30</td>
<td>66.98</td>
</tr>
<tr>
<td>ML-1M</td>
<td>1M</td>
<td>6,040</td>
<td>3,706</td>
<td>4.47</td>
<td>67.58</td>
</tr>
<tr>
<td>ML-10M</td>
<td>10M</td>
<td>69,878</td>
<td>10,677</td>
<td>1.34</td>
<td>84.31</td>
</tr>
<tr>
<td>MT-200k</td>
<td>172,506</td>
<td>7,969</td>
<td>13,864</td>
<td>0.16</td>
<td>86.84</td>
</tr>
<tr>
<td>Netflix</td>
<td>98,754,394</td>
<td>459,497</td>
<td>17,770</td>
<td>1.21</td>
<td>88.27</td>
</tr>
</tbody>
</table>

- ML = Movie Lens MT = Movie Tweetings.
- ML, MT, and Netflix these are common recommender datasets
- Datasets have varying level of density
- Long-tail items correspond to approximately 85% in three datasets
Empirical Evaluation

Performance metrics

Local ranking accuracy metrics
- Precision, Recall, F-measure

Long-tail promotion metrics
- LTAccuracy (emphasizes novelty and coverage), Stratified Recall (emphasizes novelty and accuracy)

Coverage metrics
- Coverage, Gini

Test ranking protocol [Ste13, CKT10]

“All unrated items test ranking protocol”
- Generate the top-N set of each user, by ranking all items that do not appear in the train set of that user
- Closer to accuracy the user experiences in real-world settings
Algorithms Compared

- Re-ranking frameworks for rating prediction
 - Regularized SVD (RSVD)
 - Resource Allocation (5D)
 - Ranking-based Techniques (RBT)
 - Personalized Ranking adaptation (PRA)
- Report results for two variants of each algorithm
Comparison with re-rankings models for rating-prediction

Dense dataset
ML-1M
RSVD is base accuracy recommender
Lower height is better
Corresponds to better rank
GANC outperforms RSVD in all metrics
GANC obtains lowest overall performance across 5 metrics

ALGORITHM RANKS ON ML-1M

- **RSVD**
- **5D2**
- **5D1**
- **RBT1**
- **RBT2**
- **PRA1**
- **PRA2**
- **GANC1**
- **GANC2**

- **F@5**
- **S@5**
- **L@5**
- **C@5**
- **G@5**

- **(F)measure@5**
- **(S)tratified Recall@5**
- **(L)Taccuracy@5**
- **(C)overage@5**
- **(G)ini@5**

Rachel Pottinger
http://www.cs.ubc.ca/~rap
Changing accuracy recommenders explores tradeoffs between accuracy and coverage

- GANC allows different accuracy recommenders
- Plugging the non-personalized algorithm Pop as accuracy recommender
- Competitive with more sophisticated algorithms like CofiR100
Comparison with top-N recommendation algorithms

Sparse dataset
MT-200K

Pop is base accuracy recommender

Lower height is better
Corresponds to better rank

Three variations of GANC competitive with more PSVD100 and Cofi100

ALGORITHM RANKS ON MT-200K

- F@5
- S@5
- L@5
- C@5
- G@5

(RAND) POP RSVD COFIR100 PSVD10 PSVD100 PRA GANC1 GANC2 GANC3

(F)measure@5 (S)tratified Recall@5 (L)accuracy@5 (C)verage@5 (G)ini@5

Rachel Pottinger
http://www.cs.ubc.ca/~rap
Act 2

• The first part of the talk described how to help users explore data beyond the most popular in a recommendation setting.

• Next we’ll help users understand the range of possible answers in data aggregated from multiple sources.

• Published in Extending Database Technology (EDBT) 2015 (joint with Zainab Zolaktaf and Jian Xu)
Looking for climate change: what is the average high temperature across BC for each year?

- Averaging across readings over the entire province seems reasonable
- But there are problems, e.g., inconsistent values
In this work, we helped users understand aggregation query results from multiple sources

- Answering queries in integration contexts requires combining sets of data that are segmented across multiple sources
- Averaging over all the points doesn’t work
 - Some data points have duplicates across the sources
 - The duplicates may have different values in the sources
 - Which set of sources and value combinations do we use?
- We define a **viable** answer as a possible answer
Way #1 to compute average temp
Way #2 to compute average temp
Way #3 to compute average temp
Contributions of this part

• We define aggregate answers as a distribution of viable answers
• We provide summary statistics and algorithms for the viable answer distribution
 • Key point statistics
 • High coverage intervals
 • Stability score
• We verify the effectiveness of our methods using real-life and synthetic data
Contributions of this part

- We defined aggregate answers as a distribution of viable answers
- We provided summary statistics and algorithms for the viable answer distribution
 - Key point statistics
 - **High coverage intervals**
 - Stability score
- We verified the effectiveness of our methods using real-life and synthetic data
High coverage intervals and optimization

Point statistics such as mean and variance are insufficient
Computing high coverage intervals

- The ideal, full viable answer distribution is prohibitively expensive to obtain.
- We used sampling, bootstrapping and a greedy algorithm to minimize interval length so that coverage of viable answers is above a set threshold.

(a) initial high coverage interval finding
(b) intermediate
(c) high coverage intervals that are above our threshold (θ%)
Act three: ongoing work
Understand: help users understand data provenance (joint work with Omar AlOmeir)

- Database researchers have done a great job of exploring different provenance definitions and how to calculate it
- However, this information is difficult to understand by non-DBA users, which makes it hard for users to trust their data
- We created a desirable set of features for provenance exploration systems and implemented such a system
- Our case study was on Global Legal Entity Identifiers
- We’re looking for more data
Understand: help users understand open data (joint work with Janik Andreas)

- Governments are increasingly creating open data sites
- However, these open data sites are hard to use – it’s hard to find the data that users are looking for
- We’re doing a case study on local data to look at some common open data issues:
 - Quality – granularity and details of available data
 - Metadata and data formatting
 - Availability and completeness
Understand: how can we help users understand why they got the wrong answer?
I’d love to have more people to work with

- If you have data or ideas that you think would fit in, I’d love to talk… especially if you are looking for a postdoc position!