
Stratos Idreos & Data Systems Lab



WHAT IF WE COULD REASON ABOUT THE  

DESIGN SPACE OF DATA STRUCTURES?

Stratos Idreos & Data Systems Lab



1. no perfect structure

Read 
Update 

Memory 



1. no perfect structure

Read 
Update 

Memory 
������	���������	��

Cracking 

Merging 

�������
��	��
���	�	��

��
	�	������
��������	��

�
����������		��
���	�	��

Read Optimized 

Write Optimized Space Optimized 

Trie 

Bitmap 

Hash 

LSM 

MaSM 

Bloom filter PBT 

PDT 

B-Tree 

Sparse Index 

Skiplist 



1. no perfect structure
2. apps & h/w evolve                               

Read 
Update 

Memory 
������	���������	��

Cracking 

Merging 

�������
��	��
���	�	��

��
	�	������
��������	��

�
����������		��
���	�	��

Read Optimized 

Write Optimized Space Optimized 

Trie 

Bitmap 

Hash 

LSM 

MaSM 

Bloom filter PBT 

PDT 

B-Tree 

Sparse Index 

Skiplist 



phd

th
e d

in
nin

g  

sy
st

em
s d

es
ig

ners
 

phd

phd

phd

phd

phd

phd

GET N SMART PEOPLE 

GIVE THEM T TIME 

HOPE FOR THE BEST

phd



phd

th
e d

in
nin

g  

sy
st

em
s d

es
ig

ners
 

phd

phd

phd

phd

phd

phd

GET N SMART PEOPLE 

GIVE THEM T TIME 

HOPE FOR THE BEST

phd



AUTO DESIGN 



AUTO DESIGN “IS THERE A CALCULUS OF DATA STRUCTURES 
by which one can choose the appropriate representation  

and techniques for a given problem?” (SIAM,1978)

ROBERT TARJAN



AUTO DESIGN “IS THERE A CALCULUS OF DATA STRUCTURES 
by which one can choose the appropriate representation  

and techniques for a given problem?” (SIAM,1978)

ROBERT TARJAN

HOW MANY AND WHICH?

COMPUTE PERFORMANCE?



workload

h/w

layout 
design

DESIGN SPACE
OF POSSIBLE 

STORAGE LAYOUTS



workload

h/w

layout 
design

performance
algorithms

DESIGN SPACE
OF POSSIBLE 

STORAGE LAYOUTS



without coding or 
accessing the h/w

workload

h/w

layout 
design

performance
algorithms

DESIGN SPACE
OF POSSIBLE 

STORAGE LAYOUTS



without coding or 
accessing the h/w

workload

h/w

layout 
design

performance
algorithms

WHAT-IF DESIGN AUTO-DESIGN SELF-DESIGNING SYSTEMS



DESIGN SPACE HOW TO USE COST SYNTHESIS 



DATA

INDEX

DESIGN SPACE



DATA

INDEX

DESIGN SPACE
physical layout,  
e.g., partitioning



DATA

INDEX

DESIGN SPACE
physical layout,  
e.g., partitioning

metadata, model,  
function, filters



DATA

INDEX

DESIGN SPACE
physical layout,  
e.g., partitioning

metadata, model,  
function, filters

puts, get, delete 
update, range



EACH 
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A SET OF  
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{partitioning, links, fence pointers,…}1
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3 (ALMOST) ALL 
DESIGNS ARE A  

COMBINATION/TUNING  
OF EXISTING CONCEPTS



I hope for nothing.  
I fear nothing.  

I am free.

Nikos Kazantzakis
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PERIODIC TABLE OF ELEMENTS
explains and predicts missing elements
Dimitri Mentelev

structures elements based on atomic number,  
electron configuration, and recurring chemical properties
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nihonium



Mike Franklin

TAXONOMY OF COMPLEX ALGORITHMS
transactional cache consistency maintenance

“The taxonomy is used to shed light 
both on the nature of the design space 

and on the performance tradeoffs 
implied by many of the choices that 

exist in the design space.”
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{arrays, logs, lsm-trees, b-trees}, filters, bitmaps, compression, stats
e.g., 1000x NoSQL k-v: bloom filter bits, merging policy 
e.g., access path selection: scans vs b-tree depends on concurrency 
e.g., robust scans with value by value lossy compression  
e.g., updatable bitmap indexes 
e.g., fast statistics/ML…



EXAMPLE: The design space of NoSQL Key-value Stores
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1. Which are X’s meaningful values? 

2. How does X affect read, update 
and memory amplification? 

3. Should X be a design principle 
or can it be optimized out?  

For every design principle X:
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worst case I/O: sum of false positive rates
at most one I/O per level

standard design: fixed per run 
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Figure 11: Monkey improves lookup cost under any (A) number of entries, (B) entry size, (C) amount of memory, (D) lookup locality,
and (F) merge policy and size ratio. It navigates the design space to find the design that maximizes throughput (F).

lookups target non-existing keys, and so they do not issue I/Os most
of the time due to the filters.

Figure 11 (B) depicts results for a similar experiment, with the
difference that this time we keep the number of data entries fixed
and we instead increase the entry size. This has the same impact on
performance and for the same reasons as described above.
Monkey Needs Less Main Memory. In this experiment, we show
that Monkey can match the performance of LevelDB using signif-
icantly less main memory. We set up this experiment by repeating
the default experimental setup multiple times, each time using a
different number of bits-per-entry ratio allocated to the filters. The
results are shown in Figure 11 (C). When the number of bits per en-
try is set to 0, both Monkey and LevelDB degenerate into an LSM-
tree with no filters, and so lookup cost is the same. As we increase
the number of bits per entry, Monkey significantly reduces lookup
latency. Eventually, the filters for both systems become so accu-
rate that the number of I/Os drops to nearly 0, at which point the
curves nearly converge. Overall, with the exception of the extreme
case of no memory budget for the filters, Monkey can match the
performance of LevelDB with a smaller memory footprint (up to
⇡ 60% smaller in this experiment, though the asymptotic improve-
ment of Monkey implies that the margin of improvement increases
as a function of the number of entries).
Monkey Improves Lookup Cost for Different Workloads. This
experiment shows that Monkey significantly improves lookup la-
tency for non-zero-result lookups across a wide range of tempo-
ral locality in the query workload. To control temporal locality,
we define a coefficient c ranging from 0 to 1 whereby c percent
of the most recently updated entries receive (1� c) percent of the
lookups. When c is set to 0.5, the workload is uniformly randomly
distributed. When it is above 0.5, recently updated entries receive
most of the lookups, and when it is below 0.5 the least recently
updated entries receive most of the lookups. We set up this exper-
iment by repeating the experimental setup multiple times, with the
difference that during the query phase we issue lookups to existing
keys based on the temporality coefficient.

The results are shown in Figure 11 (D). For both Monkey and
LevelDB, each lookup involves at least one I/O for the target key,
and so lookup latency comprises at least one disk seek. We mark
this source of latency using the dotted gray line, which represents
the approximate time to perform one seek on our hard disk. Any
contribution to latency above this line arises due to false positives.

A key observation in Figure 11 (D) is that lookup latency for
both Monkey and LevelDB is largely insensitive to temporal local-
ity. The reason is that in an LSM-tree the most recently updated
entries are at the shallower levels, which have exponentially lower
capacities than the largest level. Hence, even a lookup for the most
recently updated 10% of the entries has to probe most levels on
average. The curve for LevelDB slightly decreases as temporal lo-
cality increases because a lookup traverses fewer levels on average
before finding the target key and terminating, and so fewer false
positives take place. For Monkey, lookup latency is even less sensi-
tive to temporal locality. The reason is that all but the last level have
significantly lower FPRs than for LevelDB. Even though a lookup
traverses fewer levels on average before terminating as temporal lo-
cality increases, the low FPRs at these lower levels mean that false
positives are rare, and so they contribute very modestly to latency
in all cases. In this way, Monkey improves lookup latency by up to
30% in this experiment for non-zero-result lookups across a wide
range of temporal locality in the query workload.

Monkey Reaches the Pareto Curve. In this experiment, we show
that Monkey reaches the Pareto frontier and is therefore able to nav-
igate a better trade-off continuum between update cost and zero-
result lookup cost. We set up this experiment by repeating the ex-
perimental setup multiple times, each time using a different con-
figuration of size ratio and merge policy. We measure the average
latencies of lookups and updates and plot them against each other
for Monkey and LevelDB. The result is shown in Figure 11 (E).
The key observation is that for any configuration, Monkey achieves
a significantly lower lookup cost than LevelDB due the tuning of its
Bloom filters, as predicted by our analysis in Section 4.3. Hence,
Monkey shifts the trade-off curve downwards to the Pareto fron-

data entries
uniform, zero result, point queries, entry size=1KBBits per entry in bloom filter 
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ABSTRACT

Data systems make extensive use of high-performance con-
tainer data structures to store large collections of base and
intermediate data, and to provide auxiliary structures such
as indexes and fast lookup tables. Because of their central
role in data system architectures, container structures need
to be closely tuned to both the underlying hardware and
workload. Consequently, over the last five decades, hundreds
of specialized container designs have been proposed and
novel applications demand new designs to achieve optimal
performance. While essential, high-performance container
structures are notoriously difficult to write and typically
consist of hundreds of lines of hand-tuned non-trivial code.
This not only makes the code hard to maintain and debug,
but also prevents data structure and system designers from
quickly iterating between alternative designs.

We present a new programming model for container data
structures that separates container definitions into a struc-
tural specification, a physical layout component and a set of
functional feature descriptions. We demonstrate the power of
this separation by introducing a declarative domain specific
language for container data structures, called TIGRIS, and
by describing an optimizing compiler that compiles TIGRIS
specifications to highly-efficient container implementations.
TIGRIS specifications are orders of magnitude shorter than
implementations written in traditional systems languages like
C, while being retargetable across platforms and allowing
for sophisticated automatic optimization and tuning. We
present initial results that indicate that TIGRIS can express
a large variety of traditional and special-purpose container
data structures in a concise manner, without sacrificing per-
formance. We also show how concise descriptions and the
reuse of optimizations can facilitate rapid exploration of the
container design space.

1. INTRODUCTION

Containers in Data Systems. Data-intensive programs, from
simple batch-processing scripts to highly complex database

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
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Figure 1. Publications in major database conferences refer-
encing indexes, trees or access methods in their title (as
registered in the DBPL [8]). The total number of matching
publication found was 806 at the time of writing.

systems, heavily rely on high-performance container data
structure implementations data structures for efficient data
storage and retrieval. Those containers organize data objects
according to specific access rules that allow optimal read and
update behavior for their respective use case. that match
the application. Generally, containers are used to store two
categories of data. Base data is commonly stored in lists
of tuples or dictionaries, or any variations thereof such as
paged collections and column-major layouts (i.e., tuples of
collections). Especially in smaller programs, data is often
fully loaded into memory and the program is directly oper-
ating on top of the data collection. Contrary, While some
programs would store all their data in dictionaries, complex
data system use containers not only to store base data but
also auxiliary data that aids data processing. Prominent con-
tainer structures in such systems include , such as primary
and secondary indexes, intermediate data collections created
during query processing, and meta-data collections such as
page-to-frame mappings in the buffer pool and fast lookup
tables for query processing and data encoding.
Modern data systems use a large variety of containers

for different purposes. Linked-lists, arrays and vectors of
different forms are commonly used to store intermediate re-
sults between data processing stages, while fast membership
queries can be quickly answered using compact bit-vectors
and Bloom filters. Hash tables, and ordered tree structures
such as the omni-present B-tree are used to provide effi-
cient data access for both point and range queries, and over
the last decades many optimizations and specializations to
those structures have been proposed, including compression,
caching and algorithmical optimizations. Hash tables and
tree structures also provide the foundation of many data

~5K since the dawn of CS
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Equation 13 is the combination of five logical parts: tree traver-
sal, leaves traversal, data retrieval, result writing, and result sort-
ing. When compared with Equation 10, the concurrent index access
may traverse the tree multiple times (one for each query). Finally,
the amount of work to write and sort the result depends on the sum
of the selectivity of each query.

2.4 Evaluating Access Path Selection
We now discuss access path selection. Using the model devel-

oped in the previous sections we construct a ratio of the two costs
using Equations 5 and 13. We call this ratio APS (Access Path Se-
lection) and it is defined as APS = ConcIndex

SharedScan . The optimizer in a
modern analytical system can use this model to determine which
access path to deploy (more in §3). When APS � 1 a scan should
be used; when APS < 1 a secondary index access is beneficial.

In the rest of this section we present an analysis that provides
intuition and observations about access path selection choices and
cases, demonstrating evidence that it is indeed useful to support al-
ternative access paths in modern analytical systems and how these
choices are different compared to traditional systems and optimiz-
ers. The analysis in this section is based on modeling. In Sec-
tion §4, we present a detailed experimental analysis that corrobo-
rates the results and provides further insights.
When Should We Switch Access Paths? To ease the presentation
of the APS ratio, we use the four quantities defined in Equations 1,
3, 6, 7, 8, and 14, for both the SharedScan and the SharedIndex
costs: the cost to traverse the tree (T T ), the cost to traverse the
leaves (T L), the cost to traverse the data (T DS, T DR, and T DI),
and the sorting factor (SF). The costs related to the tree, T T and
T L, depend on the relation size, the index design and the hardware
characteristics. The costs to traverse the data depend on the data
size and the sustainable read bandwidth. Finally, the sorting factor
SF is incurred by sorting the index output before passing it on to
the next operator in order to build a direct competitor of the scan
operator. Using Equations 5 and 13 the access path selection ratio
is defined as follows:

APS =
q ·T T +Stot (T L+T DI +T DR)+SF ·CA

max(T DS,q ·PE)+Stot ·T DR
(15)

In fact, APS is a multivariate function, that depends on all param-
eters presented in Table 1. For each instance of a system, though,
the hardware and the physical layout decisions are already made.
In addition, at runtime the data set size is also known, so runtime
access path selection is effectively a function of the level of query
concurrency q and the total selectivity Stot : APS (q,Stot).

Following the derivation presented in Appendix B the APS ratio
can be rewritten as follows:

APS (q,Stot) =
q · 1+dlogb(N)e

N ·
⇣

BWS ·CM + b·BWS·CA
2 +

b·BWS· fp·p
2

⌘

max
�
ts,2 · fp · p ·q ·BWS

�
+Stot · rw · BWS

BWR

+
Stot

⇣
BWS·CM

b +(aw+ow) · BWS
BWI

+ rw · BWS
BWR

⌘

max
�
ts,2 · fp · p ·q ·BWS

�
+Stot · rw · BWS

BWR

+
Stot · log2 (Stot ·N) ·BWS ·CA

max
�
ts,2 · fp · p ·q ·BWS

�
+Stot · rw · BWS

BWR

(16)

Understanding the APS Fraction. Equation 16 is comprised from
two different parts. The first one takes into account query concur-
rency q, the data set size N, the index branching factor b, and the
hardware trade-offs: bandwidth vs. LLC miss, and bandwidth vs.
L1 latency. The second part is mainly affected by the predicate
evaluation cost, the total selectivity Stot , and the data layout.

Let us now examine step by step the two parts of the numerator
and the denominator. The first part of the numerator is affected
by the level of concurrency, however, it has a rather small impact
for low q because of the term dlogb(N)e

N . This means that for low
concurrency, the cost of traversing the index is very small. The
cost increases only slightly as concurrency increases. The products
BWS ·CM and b ·BWS ·CA depend on hardware characteristics and
can be explained as follows: The first is the number of bytes that
can be read sequentially from the memory bus in the delay caused
by an LLC miss and the second is the number of bytes that can be
read sequentially from the memory bus in the same duration as b
L1 accesses. Typically, the latter, is about one order of magnitude
smaller than the first. Similarly, the term b ·BWS · fp · p corresponds
to the number of bytes that can be read sequentially during the time
needed to perform the b comparisons when searching which pointer
to follow. These three terms connect scan and index accesses from
the hardware point of view (see more details in Appendix B.1).

The second part of the numerator in Equation 16 is heavily im-
pacted by the total selectivity. The fraction BWS·CM

b gives how many
index nodes can be read sequentially at the time of an LLC miss,
while the remaining part depends largely on the layout of the index
and the result set (and on the relative performance when scanning
data, traversing the tree, and writing results). Lastly, the denomi-
nator is the only place that we see the tuple size ts. This, in turn,
means that having a larger tuple size (that is, having a row store,
or a column group storage) lowers the overall value of the ratio in-
dicating a more useful index. In addition to that, the denominator
includes the cost of predicate evaluation, which will make the scan
more expensive when it is larger than the data movement, which is
the case as concurrency q increases.

For small values of q the second part of the numerator dominates,
and as a result the dynamic parameter for the decision between
scan and index is the total selectivity Stot . On the other hand, as
the number of concurrent queries increases (which is an observed
workload trend [69]), the first part of the numerator and the pred-
icate evaluation part of the denominator in Equation 16 dominate,
hence increasing the significance of query concurrency. Another
way to view the access path selection model in Equation 16 is con-
sider what happens as the data set size increases. For larger N the
impact of q is smaller, however, the observed trends in workloads
and data sets is that both q and N would increase hence keeping
the concurrency as one of the decisive factors of the comparison
between shared scans and concurrent index accesses.
Model Verification. We verify the accuracy of the model using
experimental data from four machines. For each set of experiments,
we used a multidimensional unconstrained nonlinear minimization
technique (Nelder-Mead) to fit the model. More details about the
verification process are available in Appendix C.

2.5 Analysis of the APS Model
We now proceed with a detailed analysis that sheds light on addi-

tional aspects of access path selection and we summarize the find-
ings in a number of observations. We study several cases based on
the model for varying concurrency, selectivity, data size, tuple size,
and hardware characteristics.

The parameterization of the workload, dataset, hardware, and
secondary index tuning parameters, is based on our experimen-
tal setup (see §4). We parameterize the model to match our pri-
mary experimental server using CM = 180ns, CA = 2ns, BWS =
40GB/s, BWI = 20GB/s, and BWR = 20GB/s. We denote this hard-
ware as configuration HW1. We further model an alternate hard-
ware configuration, HW2, with CM = 100ns, and bandwidth BWS =
160GB/s, BWI = 80GB/s, and BWR = 80GB/s. We study the impact

Access path selection @SIGMOD2017
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