
MobiEyes: Distributed Architecture
for Location-based Services

Ling Liu

Georgia Institute of Technology
Jointly with Buğra Gedik, Kipp Jones, Anand Murugappan, Bhuvan  Bamba



Outline of the Talk

 Motivation
 MobiEyes’ Distributed Architecture

 Design Ideas
 Sever Side Optimization
 Mobile Client Side Optimization

 Evaluation
 Location Privacy

 MobiEyes’ approach – Personalized k
Anonimization



Location Based Services
 “Location-based” services: what are they?

 Services based on the location of a principal
 allow customers or applications to request and receive information

based on their geographic locations
 maps, location dependent activities, emergency response, law

enforcement, inventory control, geo-fencing, demographic data
collection, and so on.

 Technological drivers:
 Cell phones equipped with WiFi, Bluetooth, GPS;
 Telematics, RFID tags, DHCP and IEEE 802.11 (Wireless LAN)

 Growing field:
 U.S. wireless location-based services revenues will be exceeding

$4 billion in the U.S. and $30 billion worldwide in 2005.
                          [Source: Kevira, Inc.]



Example Location Based Applications

 Location based services:
 location-dependent information delivery service

 Electronic tour guides (ex: CyberGuide)
 Transportation guides (ex: NextBus)
 Buddy trackers

 location-aware emergency services
 Roadside assistance (ex: NetworkCar)
 General emergency (ex: FCC’s Phase II E911)

 location-based advertisement
 mCommerce applications

 location-enhanced entertainment
 Mobile games (ex: Mogi)



Location Queries

 A location query is a moving query  (MQ) over
mobile moving objects
 expressed as a spatial continuous moving query over

locations of mobile objects
 Components of a MQ

 Focal object (mobile or still)
 Spatial Region (moving or static)
 Query Filter

 Result of a MQ:
 Objects that are inside the spatial area covered by the

location query’s spatial constraint (region) and satisfy the
query filter

 Target Objects (mobile or still)



6

Example Location Queries
 Moving queries over moving objects (the most general

form of location queries)
 Finding all my buddies within 10 miles on highway 85 North

every 10 minutes in the next 5 hours
 “Give me the positions of those customers who are looking for

a taxi and are within 5 miles, during next 20 minutes”
 Moving queries over static objects

 “Give me the locations and names of the gas stations that are
offering gasoline for less than $2 per gallon and are within 10
miles, during next half an hour”

 Static queries over moving objects
 “Give me the number of AAA vehicles that are currently on

service in downtown Atlanta, during the next hour”
 Moving queries on Location-dependent Information

 “Inform me the traffic situation on Highway 85 North every 5
minutes in the next hour”

Characteristics of Moving queries over moving objects 
• Target objects of a location query changes continuously 
   as the focal object or the objects being queried move continuously 

•  Spatial region of a location query is continuously changing 
   as the focal object moves continuously.



LBSs: Problems and Assumptions

 Location is dynamically changing information
 Location-dependent computing

 Cost of communication is asymmetric
 Broadcast v.s. point to point communication

 Severe power restrictions on mobile hosts
 Power constraints

 Limited resource available on mobile hosts
 Computing Resource constraints

 Frequent and foreseeable disconnections
 Service continuity

 Security issues due to mobility of hosts
 Location security + location privacy



Assumptions

 Moving objects are able to locate their positions
 Moving objects have computational capabilities

to carry out arbitrary computational tasks
 The geographical area of interest is covered by

several base stations, which are connected to a
central server or a server farm

 The communication is asymmetric
 Moving objects have synchronized clocks



Location-based Service Architecture
Alternatives

 Key Functionality
 Location query processing (moving queries over moving objects)

 Centralized client-server architecture
 Mobile clients report their positions periodically;
 Servers handle the location query and location data management.

 Distributed client-server architecture
 Partition the location query processing task into server site processing and

mobile object side processing;
 Using server mediation to establish the communication between mobile

objects.

 Decentralized peer to peer architecture
 Mobile clients serve as server, client, and router for each location query and

location data management task;
 LBS system does not have central control or knowledge of all nodes.



LBSs: State of Art
 Most of existing LBSs use centralized

architecture
 Known Assumptions

 Large number of location queries over a
fixed set of mobile objects

 Technical Focus in literature
 Server side optimization

 Spatial-Tempo indexing techniques based on
multidimensional indexes, such as R-Tree, kd-tree, Grid file

 Selective broadcast scheduling algorithms



MobiEyes: Problem Statement

 How to handle increasing number of mobile
objects with relatively smaller number of
location queries?

 How do we evaluate moving location queries
(MQs) over moving objects efficiently, in
order to reduce or minimize
 Server Load
 (Wireless) Communication Bandwidth
 Amount of Computation on Mobile Objects



Important observation
 Moving location queries are location dependent.

 Only those mobile objects that are in the geographical vicinity
of the focal objects of active location queries are relevant.

 Possible solutions
 Location-dependent indexing at the server side

 Motion-adaptive indexing, Broadcast optimization [[CIKM 2004,
ACM GIS 2004, TKDE 2006]

 But the bandwidth required for location updates is still high
 Geographical partitioning of location queries based on

their spatial validity scope can be effective.
 It ships some location query processing to the relevant mobile

clients.
 Only those mobile objects that are relevant to some active

location queries will report their location updates
 [EDBT2004, ACM TMC 2005]



A Simple Scenario

 1000  mobile objects, 100 location queries

Centralized Distributed

server

moving
objects 1000 object 

positions

results

100 query
(focal object)
positions

100 query
positions

differential
updates

results

~ 1000 ~ 200

use velocity vectors instead of positions



System Model



MobiEyes: Distributed Architecture

 Servers
 Register and maintain all location service requests (queries)
 mediate the processing of location based service requests among mobile

clients and between a mobile client and the server
 Mobile clients

 dynamically track if a moving object is entering (leaving) some query
regions defined by the nearby moving queries;

 report only important location changes to the server periodically or
aperiodically;

 share location information and communicate with one another through
server mediation/

 Important Performance Consideration
 Server load (scalability), and network bandwidth
 Scalable partition of client and server responsibilities using localization

schemes
 energy consumption at mobile clients



Basic Key Concepts and Illustrations

Grid and Grid cells

Current Grid Cell of
an Object

Bounding Box of a
Query

Monitoring Region
of a Query



Why is MobiEyes solution interesting?
 Moving computation close to places where data is

produced
 The location and the dynamic attributes of the moving objects,

which are of interest to the queries, are remote to the server but
they are local to the moving objects.

 Perform computation to save communication
 The computational capabilities of the mobile objects can be

utilized in a distributed solution, to decrease the load on the server
and increase scalability.

 Moreover the additional processing on the moving object side can
be utilized to decrease communication.

 Exploit communication asymmetry
 Although the dynamic nature of the system requires updates on

the query states to be conveyed to a possibly large number of
moving objects, the communication asymmetry inherent in mobile
communications makes it efficient to convey this information to
appropriate moving objects.



MobiEyes: Installing Queries
 Installation of a query into the system is

composed of two phases.
 First, the server state should be updated to reflect the

installation of the query.
 Second, the query should be propagated to and

installed on the right set of moving objects (within its
monitoring region).
 Find the base stations that cover the monitoring region of the

query
 Broadcast the query using these base stations
 Objects that receive the broadcast install the query if they

locate inside the monitoring region of the query



MobiEyes Optimization Techniques

 Reduce the communication from
moving objects to the server
 by only reporting velocity changes
 By reporting the focal object position

changes when they move out of its current
grid cell.

 Mobile Object Side Query Processing
 Mobile Object Side Optimization

 Using dead reckoning to further reduce
the amount of reporting on velocity

 Handling Grid Cell Changes
 Safe Period Optimization
 Lazy v.s. Eager Query Propagation

 Moving query Grouping
 Reducing the redundant processing steps at

both server and the moving objects side.



Mobile Object Site
Query Processing Logic

 A moving object periodically
processes all queries in its LQT
table.

 For each query, it predicts the
position of the focal object of the
query using the velocity, time and
position information available in
the LQT entry of the query

 Then by comparing its current
position and the estimated
position of the query’s focal
object, it determines whether
itself is covered by the query’s
spatial region.

 In case the result is different from
the last result computed in the
previous time step, the object
notifies the server of this change

inouti

inOut

.circle(0,0,r)tivipiqi

.regiontmvelposqid

sc
a

n

Let ct be current time
Let pos be my current position  
fpos = pi+vel*(ct-ti)
IF pos in circle(fpos.x,fpos.y, r)
  THEN we are in
            IF inouti == true
              THEN do nothing
              ELSE notify the server regarding my 
                        inclusion in the query result
  ELSE we are out
           // dual processing here

LQT



Velocity Change Estimation:
Dead Reckoning

What constitutes a significant
velocity change?

 Perform dead reckoning
 A focal object calculates

the difference between its
current position and its last
position broadcasted by the
server.

 Report only when the
error is > Δ



Handling Grid Cell Changes
 Focal object changes its

current grid cell
 Need to contact the server to

remove/add/update queries on
the moving objects

 Non-focal object changes its
current grid cell
 Need to contact the server

 receive new queries
 update/remove existing queries

 Immediate Propagation v.s.
Lazy Propagation monitoring region of q1 

monitoring region of q2 

monitoring region of q3 

RQI(i,j) = {q1,q2,q3}
RQI(i+1,j) = {q2,q3}

grid
cell(i,j)

grid cell(i+1,j)



Lazy Query Propagation
 Advantage:

 Eliminate the need for non-focal objects to contact the server
when they change their grid cells

 Trading off some accuracy.
 Mechanism

 Instead of receiving the new queries from the server and installing
them immediately, an object can wait until velocity vector or cell
change notifications regarding the focal objects of these queries
are broadcasted to the area in which the object locates.

 The velocity vector change notifications are expanded to include
the spatial region and the filter of the queries

 The object installs the new queries when it receives the velocity
vector change broadcast.

 Tradeoff:
 The object will be unaware of the query until a velocity vector (or

grid cell) change of the query occurs, introducing some
inaccuracy.



Optimizations: Safe Periods
Assumption: the maximum velocities of objects are known
 The safe period (sp) of the object with respect to the query Q

 The time period needed for an object to be located inside the monitoring region of Q
 An optimization to speed up the query processing on the moving object side.

 For each query in its LQT table, an object can calculate a worst case lower bound
on the amount of time that has to pass for the object to locate inside the monitoring
area of the query.

Advantage:
 Once the safe period sp is calculated for a query, it is safe to skip that query’s

periodic evaluation until the safe period has passed.



Optimizations: Grouping

full grouping 
Grouping queries with 
the matching monitoring regions

partial grouping
Grouping queries with the same 
focal objects but non-matching 
monitoring regions



Experiments

 Measures:
 Server load
 Messaging cost
 Amount of processing on moving objects



Two Basic Centralized Server side solutions

 Object index (naïve)
 Build an R*-tree on object positions
 Update the index on every position change
 Periodically Re-evaluate each query using the

index
 Query index

 Build an R*-tree on query positions
 Update the index on every focal object position

change (upon arrival of new position)
 Identify queries affected by the new position update
 Add or remove the object from the queries identified

 Allow differential update of the query result



Server Load

Server load in log scale: time spent by the simulation for executing the server
side logic per time step

Impact of distributed query
processing on server load

Effect of α on server load



Error Rate with Lazy Propagation

Query error:
the number of missing objects in

the result (compared to
the correct result) divided by the

size of the correct query
result.

Observation:
(1) The error in query results

decreases with increasing
number of objects changing
velocity vectors per time
step.

(2) Frequent grid cell crossings
are expected to decrease
the accuracy of the query
results.Error associated with

lazy query propagation



Messaging cost

Messaging cost:  total number of messages sent on the wireless medium per second
(uplink and downlink)
Centralized naïve:  send your position when it changes
Centralized optimal:  send your velocity vector when it changes

Effect of α on message costs Effect of number of objects
on messaging cost

Effect of number of objects
on uplink messaging cost



Messaging cost

Effect of number of objects changing velocity
vector per time step on messaging cost



Messaging cost

Effect of base station coverage
area on messaging cost



Amount of processing on moving objects

Amount of processing on moving objects: number of queries a moving object has
to evaluate at each time step

Effect of α on the average number
of queries evaluated per step on a

moving object

Effect of the total number of queries
on the average number of queries

evaluated per step on a moving object

Effect of the query radius on the
average number of queries evaluated

per step on a moving object



Optimizations: Safe Periods

Effect of the safe period optimization on the
average query processing load of a moving

object

pe
r m

ov
in

g 
ob

je
ct

For large values of alpha, the
safe period optimization is
very effective.

For small alpha value, the
safe period optimization incurs
a small overhead.



Power Consumption

Effect of number of queries on per object power
consumption due to communication



MobiEyes Architecture: Summary
 A distributed approach to location monitoring of

moving objects:
 aiming at reducing both the server load and the network

bandwidth requirements for continuous reporting of location
changes to the server

 Technology push:
 Storage/computing power growth + Wireless connectivity

growth

 Locality-based approach
 Moving location queries are location dependent – high and

changing locality
 Given a set of active location queries, only those mobile

objects that are in the geographical vicinity of the focal
objects are relevant.



MobiEyes:
Protecting  Location Privacy

 Policy-based Location Privacy
 Anonymization-based Location Privacy



Location Privacy Threats: Examples

 Observation identification
 if external observation is available, it can be

used to link a request to an identity
 Restricted space identification

a known location owned by identity can link
a request to an identity

 Precise location tracking
 successive position updates can be linked

together even if identifiers are removed from
updates

[Beresford et al. 2003], [Gruteser 2003]



Privacy and Anonymity in General
 Privacy: [Beresford et al. 2003)]

 “The right/claim of individuals, groups and
institutions to determine for themselves,
when, how and to what extent information
about them is communicated to others”

 Anonymity:
 “A system property which guarantees that

disclosure of information, that leads to the
identification of the end users, is prevented.”



Location Anonymity
using Location Cloaking (Perturbation)

 Protect location privacy by location perturbation
 Introduce uncertainty on exact location (e.g., location k-anonymity)
 Example 1:

 In E-911, handset users are required to be located with an accuracy of
50 to 150 meters

 Example 2:
  Temporal cloaking:

 Find taxi nearby within 1 minute  find taxi nearby within 5 minutes
Spatial cloaking:

 find taxi within 1 mile of me  find taxi within 5 miles of me
 More uncertainty  higher k, larger cloaking box  higher privacy

of location

 Tradeoff:  Location Privacy v.s. Location Service Quality
 More ambiguous location information may lead to certain

degradation in the quality of the service
 Technical Challenge

 How to balance location privacy and location service quality?



Privacy Requirements

 Privacy Requirements serve as constraints for location
cloaking

 Location k-anonymity (Beresford 03, Gruteser 03):

At least k users inside the region such as a circle of radius r
 Spatial location uncertainty tolerance
 Temporal location uncertainty tolerance

 Example:
 find taxi within 5 mile of me right now with spatial tolerance of 2 miles,

temporal tolerance of next 5 minutes, and k-anonymity of k=5.

t

x

y

Actual
Location

Region seen by
service provider

Spatial Cloaking

Temporal Cloaking



Spatial or Temporal Cloaking of Location

t

x

y
Actual

Location

Region seen by
service provider

Spatial Cloaking

Temporal
Cloaking

t

x

y Region seen by
service provider

Spatial Cloaking

Temporal Cloaking

Actual
Location



MobiEyes’ Location Privacy Solution

 Introduce a personalized k-anonymity model.
Each message can specify:
 a different k value based on its specific privacy

requirement
 spatial and temporal tolerance values based on  its

QoS requirements
 Develop a cloaking algorithm, called

CliqueCloak, capable of
 supporting customizable location k-anonymity model
 continuously processing a stream of messages



Mobile Users

MobiEyes’s Location Cloaking
System Architecture

trusted location 
server/anonymizer

LBS U LBS X LBS T

encrypted 
communication

[Gedik and Liu icdcs 2005]



Location Cloaking: The Road Map

Upon arrival of a LBS service request message
 Perturb the message based on user’s QoS specification
 Location k-anonymization

 Check message queue
 If there are k-1 other messages in the same message constrain box

as the new message, anonymize the k messages together and send
them to the service provider

 Otherwise, insert the new message in the message queue, and wait
for the next new message

 Goal
 Anonymize as many messages as possible – reduce dropped

service requests due to k-location anonymity requirement
 Challenges

 Variable k
 Constraint box: Temporal and Spatial Location Uncertainty

Tolerance



Location Cloaking Engine

stream of raw messages stream of anonymized messages

I
spatio

temporal index

G
constraint 

graph
H 

expiration heap

incoming
message m

step 1 ZoomIn

add (P(m), m) into I add m into G as a node add (m.t+m.dt, m) into H

deadline of m

CliqueCloak Algorithm

step 2 Detection step 3 Anonymization step 4 Expiration



Illustration of CC Theorem

k=2
m3

k=3
m2

k=2
m1

spatial layout I

k=2
m3

k=2
m1

k=3
m2

constraint graph I

spatial layout II

k=3
m4

constraint graph I

k=3
m4

k=3
m2

k=2
m1

k=2
m3

k=2
m3

k=2
m1

k=3
m2



Local-k vs. Nbr-k Search

 During the clique search phase, let m be
the new message, we can search for a
 clique of size m.k
 this is called local-k search

 Or we can try to maximize the size of the
clique by iterating on the list
 sortdesc {k: k≤1+|nbr(m)|, k=m’.k, m’∈ nbr(m)}
 this is called nbr-k search



Deferred vs. Immediate Search

 Do we have to search for a clique every
time we receive a new message?

 Yes  immediate search
 No  deferred search: we check

|nbr(m)|> α*m.k
 If satisfied perform search now
 Otherwise defer it: If not picked up until its

deadline, perform search



Experimental Setup
 Road data available from United

States Geological Survey (USGS)
in SDTS format

 Use transportation layer of 1:24K
Digital Line Graphs (DLGs).

 Extract three types of roads
 class 1 (expressway)
 class 2 (arterial)
 class 3 (collector)

 Map from Chamblee region of
Georgia

 Covers a region of ≈ 160km2
 Use real traffic volume data to

calculate the number of cars on
each road type

 Simulate cars moving on roads
 The trace has a duration of one

hourcar movement parameters

trace generator



Experimental Parameters
 Each car generates several messages during the simulation.
 Each message specifies an anonymity level (k value) from

the list
{5, 4, 3, 2} using a Zipf parameter of 0.6

 The spatial and temporal tolerance values of the messages
are selected independently using normal distributions

 Whenever a message is generated, the originator of the
message waits until the message is anonymized or dropped,
after which it waits for a normally distributed amount of time,
called the inter-wait time

message generation parameters



Experimental Results

 Nbr-k approach provides around
15% better average success rate

 The best average success rate
achieved is around 70

 In the worst case remaining 10%
of all messages are dropped due
to non-optimality of the algorithm

Success rates for different k values

Relative anonymity levels for different k values

upper bound on the messages 
dropped due to non-optimality

 Nbr-k shows a relative anonymity
level of 1.7 for messages with k =
2

 Local-k shows a lower relative
anonymity level of 1.4 for
messages with k = 2

 The gap vanishes for k = 5



Scalable Location Anonymity
for Continuous use of LBSs

 Solution:
 Spatio-temporal cloaking
 Personalized location k-

anonymity
 Support for users with

different privacy requirements
 Adjustable QoS / performance

tradeoffs

 Ongoing Work
 Decentralized solutions

Mobile Users

trusted location 
server / anonymizer

LBS U LBS X LBS T

encrypted 
communication

Untrusted 
LBSs



Questions

www.cc.gatech.edu/disl/projects/Mobieyes/


