
1

Managing Compliance Data:

Addressing the Insider Threat

Exemplified by Enron

Soumyadeb Mitra, Rick Snodgrass, Marianne Winslett

Department of Computer Science

University of Illinois at Urbana-Champaign

When something really bad happens, the

government likes to quickly take action to reassure

people that it will never happen again

2

 FDIC

 Sarbanes-

Oxley Act

 $700B bailout

 Most people at the top got away with millions and many did no jail

time  top execs have to sign off on financial reports

 No paper trail available for prosecution  retain routine business

documents for (typically) 7 years, tamper-proof (term-immutable)

SOX had major repercussions for corporate IT

33

Compliance regulations have teeth: periodic

audits, fines, jail terms

SEC: $1.65M each

Deutsche Bank

Goldman Sachs

Morgan Stanley

Solomon Smith

Barney

U.S. Bancorp

SOX:

Rica Foods CEO $25K

Deloitte $1M poor audit

4

The government likes to step in for non-corporate

scandals as well.

5

 Video Privacy Protection Act of 1988

 Gramm-Leach-Bliley Act’s Financial

Privacy Rule

 Health Insurance Portability and

Accountability Act (HIPAA)

E-government records are also at risk for

falsification.

6

WORM storage helps secure documents

against insider tampering
Commit File for

Prespecified

Retention

Period

Overwrite/Delete

Unexpired File

Append to File
on certain volumes

Write Once, Read Many

Adversary cannot

delete Alice’s file

Delete

Expired File

WORM can be used for IM, email,

spreadsheets, reports, and even indexes

over them. But what about structured
data?

1
2 3 4 5 6

The main “new” threat to tuples is

undetected tampering with history.

time

Bob

QueryRegret

AdversaryAlice

Commit
Record

Auditor

Integrity
Check

Trustworthy Trustworthy

Regret

Window
Query

Verification

Window

Bribed Superuser

The goal: a high-performance tamper-evident

database that supports term-immutability.

10

Auditor

Integrity
Check

Initial

DB state

Final

DB state

1T 2T 3T nT

Tampering

Auditor must verify that final state is consistent with the initial

state and sequence of transactions, even with crashes

To support term-immutability, we’ll use a

“transaction-time” database.

Legitimate update: modifies/deletes the latest version

Tampering: modifies an old version, shreds unexpired tuple

Shredding: after expiration

No changes to existing DB applications

11

1 21 23 49 59 64

When tuple t is updated/deleted,

create a timestamped new copy of it

After 7 years:

Shred!

The database is logically append-only. Pages

are modified in place.

12

header slot pointers

Tuple 1Tuple 2Tuple 3

Tuple 4Tuple 5

header slot pointers

Tuple 1 v1Tuple 2 v1Tuple 3 v1

Tuple 4 v1Tuple 5 v1

Tuple 3 v2

Can be implemented atop an ordinary DBMS on ordinary disk.

Log-consistent DBMS: keep snapshot of DB

and log of all new tuples on WORM.

13

DB State
Final

DB state

1T 2T 3T

Compliance Log

Ordinary Disk

WORM

Snapshot

(Trusted) auditor takes signed snapshot.

Space-efficient: delete after audit.

New Tuples (doesn’t delay commit)

Ordinary Log

1T 2T 3T

Auditor checks if every record in initial state

and in the log is in the final state.

14

Snapshot

DB state

Final

DB state

WORM

Auditor

Integrity
Check

Compliance Log

DB StateOrdinary Disk

Then check snapshot signature, write & sign new snapshot.

(Also validate integrity of pages, indexes, metadata.)

1T 2T 3T

Tampering will make the compliance log and

DB inconsistent.

15

Snapshot

DB state

Final

DB state

WORM

Auditor

Integrity
Check

Compliance Log

DB StateOrdinary Disk
Update t

Add

“NEW_TUPLE <t>”

16

Snapshot

DB state

Final

DB state

Auditor

Integrity
Check

Compliance Log

We can speed up audits by using existing B-

trees during comparison.

1. Sort the compliance log on

<relation name, primary key, timestamp>

2. Merge it with the old

snapshot (already sorted) …

3. While comparing it to the

new DB (already sorted)

Merge

Cost: O(L log L + Ds + Df)

17

Snapshot

DB state

Final

DB state

Auditor

Integrity
Check

Compliance Log

We can make audits even faster with a commutative

incremental cryptographic hash function

1. Compute h(t), for all t

2. Add the h(t) (mod large number)

3. Compare old and new sums

Add h(t)

Cost: O(L + Df)

4. Store the new sum (and possibly the

new (unsorted) snapshot)

Compliance log records from aborted

transactions will make the audit fail

18

1T 2T 3T

Snapshot

DB state

Final

DB state

WORM

Auditor

Integrity
Check

Compliance Log

DB StateOrdinary Disk

NEW_TUPLE <t>

Memory Buffer Pool

t

Ordinary Log

tt

NEW_TUPLE <t, transaction ID>

ABORT <transaction ID>

STAMP_TRANS <ID, time>

But queries between audits may read

tampered values.

19

Initial

DB state

Final

DB state

1T 2T 3T nT

Auditor

Integrity
Check

Tamper t Untamper t

Read

tampered t

Record page hashes in the compliance log.

20

Initial

DB state

Final

DB state

1T 2T 3T nT

Auditor

Integrity
Check

1P 2P

Compliance Log

Hash

tuples on

P1

NEW_TUPLE <t, page #>

ABORT <transaction ID>

STAMP_TRANS <ID, time>

READ <page #, hash>

SPLIT_PAGE <#, #, #,

new contents>

The auditor can replay the log to compute

the page hash.

21

Initial

DB state

Final

DB state

1T 2T 3T nT

Auditor

Integrity
Check

1P 2P

Compliance Log Recreate

the hash

Must hash EXACTLY what the reader saw:

Uncommitted tuples, missing timestamps, no already-aborted tuples.

Tampering will cause the page hash to

change.

22

Initial

DB state

Final

DB state

1T 2T nT

Auditor

Integrity
Check

P

Compliance Log

Hash computed by the auditor from the compliance log

won’t match the hash computed by the DBMS.

Tamper t

Replaying the log can be slow. Instead, use an

incremental sequential hash function, assign each

tuple an order # on its page.

23

Initial

DB state

Final

DB state

1T 2T 3T nT

Auditor

Integrity
Check

1P 2P

Compliance Log
Now only O(L) to audit page reads.

Additional complications to ensure that

the auditor hashes EXACTLY what the

reader saw.

Sort P1 tuples

on order #,

then hash them

Over time, the DB can get very big, making

page integrity checks costly.

 Use time-split B-trees (Lomet & Salzberg) to

separate out historical versions of tuples &

their index entries

 Put historical tuples/index entries on WORM

 Only audit them one time on WORM

 Log changes to index pages as for data

pages

24

The hard part: log-consistent DBs must

handle crashes correctly

 Transaction committed but its entries are not in

the compliance log

 Flush the entries every regret interval

 Uncommitted transaction’s entries reach the

compliance log

 Entries must be logically removed from the log

 The adversary should not be able to exploit this to

delete records of committed transactions

 Recovery: put all new ABORT/STAMP_TRANS

records on WORM before traditional recovery

25

Our implementation used Berkeley DB +

transaction time layer + compliance plugin +

time-split B-trees

 Not-quite-met goal: don’t change BDB

 Log which transactions commit, abort

 Clean up compliance log at beginning of recovery

 Could implement these outside of kernel in future

 Logger taps into pread/pwrite

 Compare new, old versions of page; differences go in

compliance log

 Hash page on pread trust the buffer cache

 TPC-C + tuple order #s, over NFS

26

Compliance logging and hash-on-read have

very reasonable overhead.

27

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

T
o

ta
l
ru

n
 t

im
e
 (

s
e
c
s
)

No. of transactions (thousands)

Regular TPCC

Log-Consistent+Hash-on-Read

Log-Consistent

Details, details, details in ICDE 2009 paper

 How to shred tuples (complicated but no fancy crypto)

 Non-quiescent audits

 Lazy/eager metadata changes

 Crash before committed transaction’s NEW_TUPLEs

reach WORM

 Preventing attacks that exploit “quiet” DB times

 Duplicate NEW_TUPLE , UNDO entries due to crash

recovery

 How to decide when to time split

 More experiments

…

28

In conclusion: we can provide term-

immutability for RDBs at modest cost

 Keep signed DB snapshot, log of updates on

WORM

 TPC-C ~10% slower

 5-6.5 minute audit for 100K transactions

 Modest changes to DBMS kernel

29

