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When something really bad happens, the 

government likes to quickly take action to reassure 

people that it will never happen again
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 FDIC

 Sarbanes-

Oxley Act

 $700B bailout



 Most people at the top got away with millions and many did no jail 

time  top execs have to sign off on financial reports

 No paper trail available for prosecution  retain routine business 

documents for (typically) 7 years, tamper-proof (term-immutable)

SOX had major repercussions for corporate IT
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Compliance regulations have teeth: periodic 

audits, fines, jail terms

SEC: $1.65M each

Deutsche Bank 

Goldman Sachs 

Morgan Stanley

Solomon Smith 

Barney 

U.S. Bancorp

SOX:

Rica Foods CEO $25K

Deloitte $1M poor audit
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The government likes to step in for non-corporate 

scandals as well.
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 Video Privacy Protection Act of 1988

 Gramm-Leach-Bliley Act’s Financial 

Privacy Rule

 Health Insurance Portability and 

Accountability Act (HIPAA)



E-government records are also at risk for 

falsification.
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WORM storage helps secure documents 

against insider tampering
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WORM can be used for IM, email, 

spreadsheets, reports, and even indexes 

over them.  But what about structured
data?
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The main “new” threat to tuples is 

undetected tampering with history.
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The goal: a high-performance tamper-evident 

database that supports term-immutability.
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Auditor must verify that final state is consistent with the initial 

state and sequence of transactions, even with crashes



To support term-immutability, we’ll use a 

“transaction-time” database.

Legitimate update: modifies/deletes the latest version

Tampering: modifies an old version, shreds unexpired tuple

Shredding: after expiration

No changes to existing DB applications
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1 21 23 49 59 64

When tuple t is updated/deleted, 

create a timestamped new copy of it 

After 7 years:  

Shred!



The database is logically append-only. Pages 

are modified in place.
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header slot pointers

Tuple 1Tuple 2Tuple 3 

Tuple 4Tuple 5 

header slot pointers

Tuple 1 v1Tuple 2 v1Tuple 3 v1

Tuple 4 v1Tuple 5 v1

Tuple 3 v2

Can be implemented atop an ordinary DBMS on ordinary disk.



Log-consistent DBMS: keep snapshot of DB 

and log of all new tuples on WORM.
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(Trusted) auditor takes signed snapshot.  

Space-efficient: delete after audit.

New Tuples (doesn’t delay commit)

Ordinary Log



1T 2T 3T

Auditor checks if every record in initial state 

and in the log is in the final state.
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Then check snapshot signature, write & sign new snapshot. 

(Also validate integrity of pages, indexes, metadata.)



1T 2T 3T

Tampering will make the compliance log and 

DB inconsistent.
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We can speed up audits by using existing B-

trees during comparison.

1.  Sort the compliance log on        

<relation name, primary key, timestamp>

2.  Merge it with the old 

snapshot (already sorted) …

3.  While comparing it to the 

new DB (already sorted)

Merge

Cost:  O(L log L + Ds + Df)
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Snapshot
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We can make audits even faster with a commutative 

incremental cryptographic hash function

1. Compute h(t), for all t

2.  Add the h(t) (mod large number)

3.  Compare old and new sums

Add h(t)

Cost:  O(L + Df)

4.  Store the new sum (and possibly the 

new (unsorted) snapshot)



Compliance log records from aborted 

transactions will make the audit fail
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But queries between audits may read 

tampered values.
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Record page hashes in the compliance log.
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The auditor can replay the log to compute 

the page hash. 
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Must hash EXACTLY what the reader saw: 

Uncommitted tuples, missing timestamps, no already-aborted tuples.



Tampering will cause the page hash to 

change.
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Hash computed by the auditor from the compliance log

won’t match the hash computed by the DBMS.

Tamper t



Replaying the log can be slow.  Instead, use an 

incremental sequential hash function, assign each 

tuple an order # on its page. 
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Now only O(L) to audit page reads.

Additional complications to ensure that 

the auditor hashes EXACTLY what the 

reader saw.

Sort P1 tuples 

on order #, 

then hash them



Over time, the DB can get very big, making 

page integrity checks costly.

 Use time-split B-trees (Lomet & Salzberg) to 

separate out historical versions of tuples & 

their index entries

 Put historical tuples/index entries on WORM

 Only audit them one time on WORM

 Log changes to index pages as for data 

pages
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The hard part: log-consistent DBs must 

handle crashes correctly

 Transaction committed but its entries are not in 

the compliance log

 Flush the entries every regret interval

 Uncommitted transaction’s entries reach the 

compliance log

 Entries must be logically removed from the log

 The adversary should not be able to exploit this to 

delete records of committed transactions

 Recovery: put all new ABORT/STAMP_TRANS

records on WORM before traditional recovery
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Our implementation used Berkeley DB + 

transaction time layer + compliance plugin + 

time-split B-trees

 Not-quite-met goal: don’t change BDB

 Log which transactions commit, abort

 Clean up compliance log at beginning of recovery

 Could implement these outside of kernel in future

 Logger taps into pread/pwrite

 Compare new, old versions of page; differences go in 

compliance log

 Hash page on pread trust the buffer cache

 TPC-C + tuple order #s, over NFS
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Compliance logging and hash-on-read have 

very reasonable overhead.
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Details, details, details in ICDE 2009 paper

 How to shred tuples (complicated but no fancy crypto)

 Non-quiescent audits

 Lazy/eager metadata changes

 Crash before committed transaction’s NEW_TUPLEs 

reach WORM

 Preventing attacks that exploit “quiet” DB times

 Duplicate NEW_TUPLE , UNDO entries due to crash 

recovery

 How to decide when to time split

 More experiments

…
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In conclusion: we can provide term-

immutability for RDBs at modest cost

 Keep signed DB snapshot, log of updates on 

WORM

 TPC-C ~10% slower

 5-6.5 minute audit for 100K transactions

 Modest changes to DBMS kernel
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