Data (and Links) on the Web

Alberto Mendelzon
University of Toronto

http://www.cs.toronto.edu/~mendel

Joint work with Gus Arocena, Attila Barta, George Mihaila, Tova Milo, Davood Rafiei, Greg Keast, Elaine Toms, Joan Cherry
Outline

• Data on the Web
 semistructured data: data models, query languages

• What about links?

• Two link-centric projects
 WebSQL/WebOQL: unstructured/semistructured data + links
 TOPIC: exploiting links to evaluate page reputations

• Future Work
Data on the Web

Excellent survey of semistructured data
Semistructured Data

60’s: Data in files, structure in application programs

70’s, 80’s: Data and structure (schema) in DBMS

90’s: Data on the Web, where is the schema?

“Schemaless”: HTML

“Self-Describing”: XML
Example: an XML document

<north-america>
 <states>
 <state id = "s1">
 <sname>California</sname>
 <capital idref="c1">
 <governor>Gray Davis</governor>
 </capital>
 </state>
 ...
 </states>
 <provinces>
 <province id = "p1">
 <pname>Ontario</pname>
 <capital idref="c2">
 <premier>Mike Harris</premier>
 </capital>
 </province>
 ...
 </provinces>
</north-america>
<cities>
 <city id = “c1”>
 <cname> Sacramento </cname>
 <state-of idref = “s1”>
 </city>

 <city id = “c2”>
 <cname> Toronto </cname>
 <pop> 2.5M </pop>
 <province-of idref = “p1”>
 </city>
...
</cities>

...
State of the Art

• Data Models
 Pioneering work: OEM, LORE/LOREL, UnQL
 Data models for XML: XML Schema, DOM, RDF

• Query Languages
 SS QL’s: LOREL, UnQL, ...
 XML QL’s: XML-QL, XSLT, XQL

• Indexing

• Storage Mappings
What about the links?

Entry for link in index of DOTW book:

• pp. 45-46: XLink and XPointer
• pp. 189: “If Web data follows the same patterns as Web documents, then we should expect links to become prevalent.”

The Web is not just semistructured data: it’s autonomous distributed pieces of unstructured, semistructured, and structured data, interconnected by link
Some link-aware projects

- Strudel (AT&T)
- Tiramisu (Washington)
- Araneus (Rome)
- AutoWeb (Milan)
- SQUEAL (MIT)
- COIR (NEC)
- FLORID (Freiburg)
- WebSQL/WebOQL (Toronto)
WebSQL: Unstructured data + links

- Integrate *Browsing & Searching*
- Data Model:

 Document (URL, title, type, length, text, modif)

 Anchor (base, label, href)

- Query Language: SQL + regexps
- Semantics:

 - Materialize a fragment of the database
 - Compute the answer on this fragment
• Find documents about Toronto that reside in servers in Canada

```sql
SELECT d.url, d.title
FROM Document d
    SUCH THAT d MENTIONS “Toronto”
WHERE d.url CONTAINS “.ca$”
```

• Find documents about WebSQL that point to U of T

```sql
DEFINE INDEX “HotBot”;

SELECT d.url
FROM Document d
    SUCH THAT d MENTIONS “WebSQL”,
        Anchor a
    SUCH THAT base = d,
WHERE a.href CONTAINS “toronto.edu”
OR a.href CONTAINS “utoronto.ca”
```
Search and Navigation

• Documents about “excursions” near WWW9 home page

SELECT d.url, d.title
FROM Document d
SUCH THAT “www9.org” (->| ->-> | ->->->) d
WHERE d.text CONTAINS “excursions”
Path Regular Expressions

• Alphabet (Link types)

 #> interior link: same document
 -> local link: same server
 => global link: different server
 = null path

• Regexps Over Link Types

 -> | => path of length one, either local or global
 ->* local path of any length
 =>-->* idem, but in other servers
 (->|=>)* the reachable portion of the Web
User-Defined Link Types

DEFINE LINK \[\text{next}\] AS label CONTAINS “Next”;

SELECT d.url
FROM Document d
SUCH THAT “http://the.starting.document” \[\text{next}\]* d,
WHERE d.title CONTAINS “Canada”;

![Diagram showing a sequence of boxes connected by arrows labeled "Next"]
Example applications

- Indexing an On-line Manual
- Indexing Publication List
Index of Online Publications

- Need pairs <URL of .ps, Metadata>

Internet

Alberto Mendelzon, George Mihaila, Tova Milo, Querying the World Wide Web, in Proc. PDIS'96, Miami, December 1996.

SELECT a.href, a.label
FROM Anchor a
SUCH THAT base = “http://www.cs.utoronto.ca/~mendel/papers.html”
A (partial) list of publications


```
DEFINE CONTEXT BEGIN = <LI>, END = <LI>;
SELECT e.href, e.context
FROM Anchor e SUCH THAT
    base = “http://www.math.tau.ac.il/~milo/dept/papers.html”
WHERE e.href CONTAINS “.ps”
```
DEFINE LINK [here] AS label CONTAINS “here”
SELECT e.url, d.text
FROM Document d SUCH THAT
 “http://www.cis.upenn.edu/~db/langs/allpapers.html” [here] d,
 d [here] e;
Programmatic Interface

public static void main(String args[]) {
 String query = "SELECT x.url, x.title, x.length, x.date "+
 " FROM Document x SUCH THAT x MENTIONS""Java"";";

 try{
 WebSQLServer eng = new WebSQLServer(query, new Mon());
 for (Enumeration e = eng.elements();
 e.hasMoreElements();) {
 Vector tuple = (Vector) e.nextElement();
 for (int i = 0; i < eng.tupleSize; i++) {
 System.out.print(tuple.elementAt(i));
 System.out.print(" ");
 }
 System.out.println();
 }
 } catch(Exception e){System.out.println("Couldn\'t create server.");}
}
WebOQL: semistructured data + links

- WebSQL: Web as graph of atomic objects
- WebOQL: Web as graph of structured objects
- Query:
 - the Web
 - a single page
 - a set of related pages
- Restructure:
 - HTML to HTML
 - HTML to databases
 - Databases to HTML
City Overview

- One of the most attractive aspects of our city is the variety of cultural activities. You can purchase tickets for several theatres from Theatres Online.

- All the hotels on the Web provide discounts to cyber-clients!

- If you are interested in live sports, then you must visit Sports Zone. You can also buy tickets from them.
Data Model

• Records as Labels on Arcs
• Internal and External Arcs
Tree operators

T

T'

T

T!
Query: list elements containing “ticket”

[Tag “UL” /
 select y
 from y in doc ’
 where y’.text ~ “ticket”]

[Tag: UL]

[Tag: LI]

[Label: Theatres Online,
 Url: http://www..., Base: http://www..., Text: One of the ...]

[Tag: XYZ,
 Text: One of the ...]

[Tag: XYZ,
 Text: This page contains ...]

[Tag: LI]

[Tag: XYZ,
 Text: If you are...]

[Tag: XYZ,
 Text: If you are...]

[Label: Sports Zone,
 Url: http://www..., Base: http://www..., Text: Sports Zone ...]
CNN Home page
Extracting CNN’s Headlines

```
select [Section:Y.text, Headline:z.text, Url:z’.url]
from X in “http://www.cnn.com” via ^*[text ~ “T O P”],
    Y in X!!!’ via ^*[tag = “blockquote”],
    z in Y!’
```

[Section: U. S.,
 Headline: Part-time ...
 Url: http://www.cnn...]

[Section: U. S.,
 Headline: Canadians win ...
 Url: http://www.cnn...]

[Section: World,
 Headline: Fire in Toronto ...
 Url: http://www.cnn...]
Restructuring the Result into HTML

Select

from X in “http://www.cnn.com” via ^*[text ~ “T O P”],
Y in X!!!’ via ^*[tag = “blockquote”], z in Y!’

[Tag: “table”]/

select [Tag: ”tr”/ [Tag: ”td”, Text: Y.text] + [Tag: ”td”, Text: z.text] +
[Tag: ”td”/ [Label: z’.url, Url: z’.url]]

from X in “http://www.cnn.com” via ^*[text ~ “T O P”],
Y in X!!!’ via ^*[tag = “blockquote”], z in Y!’

[Tag: table]
[Tag: tr]
[Tag: th, Text: Section]
[Tag: th, Text: Headline]
[Tag: th, Text: Url]
[Tag: td, Text: U. S.]
[Tag: td, Text: Part-time …]
[Label: http://www.cnn..., Url: http://www.cnn...]
Generating a new Web

Table = [previous query]

select [y'] as y.Text
from x in Table’!!!, y in x

creates one page for each Section, with the Section name as URL
Easy to do in WebOQL

Extract all headings

Extract all images

Linearize page hierarchy

Flatten hierarchy into table

Create Web views

Extract pictures of faculty
SCAN
“http://www.cs.toronto.edu/DCS/People/Faculty/index.html”
USING
 ANY
 <BODY>
 MANY

 { MemberName }

 </BODY>
AND
 MemberPage
USING
 ...
GIVING
 <HTML>
 <TABLE>
 {<TR>
 <TD> text(MemberName) </TD>
 <TD> </TD>
 </TR>}
 </TABLE>
 </HTML>
Generated WebOQL

[Tag:"html"/
 [Tag:"table"/
 select [Tag:"tr"/
 [Tag:"td"/[Text:MemberName.text]] +
 [Tag:"td"/[Src:Jpg.src, Tag:"img"]]
]
 from V__ is "http://www/DCS/People/Faculty/index.html",
 V_0 in V__!" via [Tag = "ul"] until true,
 V_1 in V_0',
 MemberName is V_1'&,
 MemberPage is MemberName,
 V_2 in browse(MemberPage.url)
 via ^*[Src ~ ".jpg$" and Tag = "img"],
 Jpg is V_2&
 where V__!.Tag = "body" and V_1.Tag = "li" and
 MemberName.Tag = "a"
];
<table>
<thead>
<tr>
<th>Name</th>
<th>Image Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.S. Abdelrahman, MSc, PhD</td>
<td></td>
</tr>
<tr>
<td>R.M. Baecker, MSc, PhD</td>
<td></td>
</tr>
<tr>
<td>A. Bonner, MSc, PhD (Erin)</td>
<td>...</td>
</tr>
</tbody>
</table>
System Architecture

Interactive User

Application

API

WebOQL Engine

Wrapper Manager

Wrapper

Wrapper

Wrapper

Wrapper

Wrapper

DBMS

File System

Index Server

LDAP

WWW

Query / Web

URL / Tree
Computing Page Reputations

(Rafiei and Mendelzon, WWW9)

- How do we rank a large number of pages relevant to a query, so the *good* ones appear first? (search engine company’s problem)
- Given a page and a topic, how *good* is this page on this topic? (tenure committee’s problem)
- Given a page (or a site), what topics is this page *good* on? (webmaster’s problem)
- *Good* means reputable, authoritative, well-known, up-to-date,...

Idea:

- Analyze links to compute \(\text{Rank}(p, t) = \text{goodness of page } p \text{ on } t \)
Page Rank

(Brin and Page 1998, Google; Geller 1978 in bibliometrics)

A page is good if lots of good pages point to it.

One level random walk model:

At each step:

• with prob $p > 0$ jump to a random page, or

• with prob $(1-p)$ follow a random link from the current page

Page Rank of page p = probability, in the limit, of hitting page p
Problems with PageRank

• topic-independent: a page may be good for one topic but not another

• good pages may not point to each other: BMW does not point to Mercedes
Hubs and Authorities

(Kleinberg, 1998)

Given a set of pages relevant to topic t:

A page is a good hub for t if it points to good authorities on t

A page is a good authority on t if good hubs for t point to it

Algorithm to find authorities on t:

• Issue the query t to a search engine

• Take the first N answers, add pages at distance 1

• Compute authorities for t within this set
A two-level random walk model

• with prob $d>0$ jump to random page that contains term t

• with prob $(1-d)$ follow random link forward/backward from the current page, alternating directions

Pages accumulate

• forward visits

• backward visits
• $A(p,t) = \text{probability of a forward visit to page } p \text{ when searching for term } t = \textbf{Authority rank} \text{ of page } p \text{ on term } t$

• $H(p,t) = \text{probability of a backward visit to page } p \text{ when searching for term } t = \textbf{Hub rank} \text{ of page } p \text{ on term } t$

Theorem If $d > 0$, the two-level random walk has unique stationary probability distributions $A(p,t)$ and $H(p,t)$.

(Does this model Kleinberg’s algorithm?

No: See Lempel and Moran, WWW9, Borodin et al, WWW10)
Does Hubs&A Authorities solve our ranking problems?

- Search engine problem: yes
- Tenure committee’s problem: maybe
- Webmaster’s problem: no
Inverting H&A computation

Topic → H & A → Pages

Page → ? → Topics
Two Solutions

- **Global solution**: a large crawl of the web is available. Find authorities on each term t
- **Local solution**: approximate the global solution by starting with some set of pages and the terms that appear in them, and iteratively expanding this set
Global Solution (bottom up)

For every page p and term t

$$A(p, t) = H(p, t) = \frac{1}{2N_t}, \text{ if } t \text{ appears in } p$$

$$A(p, t) = H(p, t) = 0 \text{ otherwise.}$$

While changes occur

$$A(p, t) = (1 - d) \sum_{q \rightarrow p} \frac{H(q, t)}{Out(q)} + \begin{cases} \frac{d}{2N_t} & \text{if } t \text{ appears in page } p; \\ 0 & \end{cases}$$

$$H(p, t) = (1 - d) \sum_{p \rightarrow q} \frac{A(q, t)}{In(q)} + \begin{cases} \frac{d}{2N_t} & \text{if } t \text{ appears in page } p; \\ 0 & \end{cases}$$
Local Solution: (top down)

Set of pages:

Set of terms: all terms t that appear in p or some of the q_i’s
Local algorithm (Using the one-level model for simplicity)

\[R(p, t) = \frac{d}{N_t} \]

For \(i = 1, 2, \ldots, k \)

For each path \(q_1 \rightarrow q_2 \rightarrow \ldots \rightarrow q_i \rightarrow p, \)

For each term \(t \) in page \(q_1 \)

\[
R(p, t) = R(p, t) + \left(\frac{(1 - d)^i}{\prod_{j=1}^{i} Out(q_i)} \right) \frac{d}{N_t}
\]
TOPIC: Approximating the local algorithm

• Given page p
 • Find 500 pages q that link to p (using Altavista)
 • From each q “snippet,” extract all terms t
 • Remove internal links and duplicate snippets
 • Remove stop words and rare terms
 • Apply the local algorithm with $d = 0.10$, $k = 1$, $Out(q) = 7.2$
Penetration and Focus

(Mendelzon and Rafiei, IEEE Bull. Data Eng., 2000)

For d and Out(q) constant, the local algorithm reduces to

\[R(p,t) \sim \frac{I(p,t)}{N_t} \]

where \(I(p,t) = \) number of pages that contain \(t \) and point to \(p \), \(N_t = \) number of pages that contain \(t \)

\[R(p,t) = \text{fraction of pages on } t \text{ that point to } p: \textit{penetration} \text{ of page } p \text{ on topic } t \]

Can also define

\[F(p,t) = \text{fraction of pages pointing to } p \text{ that are about } p: \textit{focus} \text{ of page } p \text{ on topic } t \]
Example: authorities on (+censorship +net)

- www.eff.org
 Anti-censorship, Join the Blue Ribbon, Blue Ribbon Campaign, Electronic Frontier Foundation

- www.cdt.org
 Center for Democracy and Technology, Communications Decency Act, Censorship, Free Speech, Blue Ribbon

- www.aclu.org
 ACLU, American Civil Liberties Union, Communications Decency Act
Example: Personal Home Pages

- www.w3.org/People/Berners-Lee
 History of the Internet, Tim Berners-Lee, Internet History, W3C

- www-db.stanford.edu/~ullman
 Jeffrey D. Ullman, Database Systems, Data Mining, Programming Languages
Examples: Institutional Home Pages

- www.db-stanford.edu:
 Database research, data warehousing, database systems, data mining, Stanford

- www.almaden.ibm.com:
 IBM Almaden, search engines, data mining, microscopy, visualization
Examples: Canadian CS Departments

- **www.cs.toronto.edu:**
 Women hockey, computer vision, department of Computer Science, University of Toronto, archive, Russian

- **www.cs.ualberta.ca:**
 University of Alberta, virtual reality, chess, language, artificial

- **www.cs.ubc.ca:**
 confocal, periodic table, anime, Computer Science, manga, Mathematics
TOPIC as search engine ranking method

- Given query t, rank answer pages p by $R(p,t)$
- Experiment: 467 queries obtained from major search engine company. For each query, rerank top 100 engine hits by TOPIC ranking
- Evaluation with human subjects in progress by FIS (Keast et al, ACM/IEEE DL Conf., 2001)
Limitations

- Topics vs. terms
- Search engines provide non-random samples
- All links are equal
- Some topics not well-represented on the Web
Current Work

- Implementing the global algorithm (UofA, using Internet Archive snapshot)
- Incorporating TOPIC rank into search engine
- Evaluation of TOPIC as search engine rank function
Summary

• Unstructured data + links: WebSQL
• Semistructured data + links: WebOQL
• Exploiting links for reputation ranking: TOPIC