Hidden-Web Databases: Classification and Search

Luis Gravano Columbia University

http://www.cs.columbia.edu/~gravano

Joint work with **Panos Ipeirotis** (Columbia) and **Mehran Sahami** (Stanford/Google)

Outline of Talk

- Classification of Hidden-Web Databases
- Search over Hidden-Web Databases
- Overview of Columbia's Database Group

"Hidden Web" Databases

"Surface" Web

- Link structure
- Crawlable
- Documents indexed by search engines

"Hidden" Web

- No link structure
- Documents "hidden" in databases
- Documents not indexed by search engines
- Need to query each collection individually

PubMed/Medline: Example of a Hidden-Web Database

Query [thrombopenia] on PubMed: 24,826 hits.

PubMed is at www.ncbi.nlm.nih.gov/PubMed/

Query [thrombopenia] on Google: 856 hits.

Query [thrombopenia site:www.ncbi.nlm.nih.gov] on Google: 0 hits.

- Search engines ignore hidden-web databases (cannot crawl inside).
- Autonomous databases typically export no metadata.

Focus: Searchable Text Databases ("Hidden" or not, Really)

- Often sources of valuable information
- Often hidden behind search interfaces
- Often non-crawlable by traditional crawlers

Interacting With Searchable Text Databases

- Searching: Metasearchers
- Browsing: Yahoo!-like directories
 - InvisibleWeb.com
 - SearchEngineGuide.com

Health > Publications > PubMed

How to Classify Text Databases Automatically

- Task definition
- Classification through query probing
- Experimental evaluation

Text Database Classification: Two Possibilities

- **Coverage**-based classification:
 - Database contains **many documents** about category
 - Coverage: #docs about this category
- **Specificity**-based classification:
 - Database contains mainly documents about category
 - Specificity: #docs/|DB|

Text Database Classification: An Example

Category: Basketball

- Coverage-based classification
 - ESPN.com, NBA.com
- **Specificity-based** classification NBA.com, but **not** ESPN.com

Text Database Classification: More Details

- Define two "editorial" thresholds:
 - *Tc:* coverage threshold (# docs in category)
 - *Ts:* specificity threshold (fraction docs in category)
- Assign a text database to a category C if:
 - Database coverage for C at least *Tc*
 - Database specificity for C at least *Ts*

Brute-Force Database Classification "Strategy"

- 1. Extract all documents from database.
- 2. Classify documents.
- 3. Classify database accordingly.

Problem: No access to full contents of hidden-web databases!

Solution: Exploit database search interface to approximate document classification Search-based Hidden-Web Database Classification

- 1. Train a (rule-based) document classifier.
- 2. Transform classifier rules into queries.
- 3. Adaptively send queries to databases.
- 4. Categorize databases based on adjusted number of query matches.

Training a Document Classifier

- Feature Selection: Zipf's law pruning, followed by information theoretic feature selection [Koller & Sahami'96]
- Classifier Learning: RIPPER [Cohen'95]
 - Input: A set of pre-classified, labeled documents
 - Output: A set of classification rules
 - IF linux THEN Computers
 - IF jordan AND bulls THEN Sports
 - IF heart AND pressure THEN Health

Designing and Implementing Query Probes

- Transform each document classifier rule into query:
 IF jordan AND bulls THEN Sports → +jordan +bulls
- Issue each query to database to obtain number of matches without retrieving any documents

Using Probe Results for Classification

Hierarchically Classifying the ACM DigLib (*Tc*=100, *Ts*=0.5)

Adjusting Query Results

- Search-based estimates of category distribution not perfect:
 - Queries for one category match documents from other categories
 - Queries might overlap
- Document classifiers not perfect:
 - Queries do not match all documents in a category

After classifier training, construct a **confusion matrix** for query probes

Confusion Matrix Adjustment of correct class Query Probe Results

	comp	sports	health		Real Coverage		Estimated Coverage
comp	0.80	0.10	0.00		1000		800+500+0 = 1300
sports	0.18	0.85	0.04	X	5000	=	180 + 4250 + 2 = 4432
health	0.02	0.05	0.96		50		20+250+48 = 318

assigned class

This "multiplication" can be inverted to get the real coverage figures from the probe estimates. Confusion Matrix Adjustment for Noise Reduction

M . Coverage(D) ~ ECoverage(D) Coverage(D) ~ M⁻¹ . ECoverage(D)

- *M* usually diagonally dominant for "reasonable" document classifiers, hence invertible
- Compensates for errors in search-based estimates of category distribution

Experiments: Data

- 72-node 4-level topic hierarchy from InvisibleWeb/Yahoo! (54 leaf nodes)
- 500,000 Usenet articles (April-May 2000):
 - Newsgroups assigned by hand to hierarchy nodes
 - RIPPER trained with 54,000 articles (1,000 articles per leaf)
 - -27,000 articles used to construct confusion matrix
 - Remaining 419,000 articles used to build
 Controlled Databases

Experiments: Data Controlled Databases

500 databases built using 419,000 newsgroup articles

- One label per document
- 350 databases with single (not necessarily leaf) category
- 150 databases with varying category mixes
- Database size ranges from 25 to 25,000 articles
- Indexed and queries using SMART

Experiments: Data Web Databases

- 130 real databases picked from InvisibleWeb (first 5 under each topic)
 - CancerBACUP; Iweb category: Cancer
 - Java@Sun; Iweb category: Java
 - John Hopkins AIDS Service; Iweb category: AIDS
- Only 12 with "newsgroup-like" data
- Used InvisibleWeb's categorization as correct
- Built simple "wrappers" for querying

Experimental Results: Controlled Databases

- Feature selection helps.
- Confusion-matrix adjustment helps.
- **F-measure above 0.8** for most *<Tc, Ts>* combinations tried.
- Results degrade gracefully with hierarchy depth.
- Relatively **small number of probes** needed for most *<Tc, Ts>* combinations tried.
- Also, probes are short: 1.5 words on average; 4 words maximum.

Experimental Results: Web Databases

- **F-measure above 0.7** for best *<Tc, Ts>* combination found.
- 185 query probes per database on average needed for choice of thresholds.
- Also, **probes are short**: 1.5 words on average; 4 words maximum.

What if a "Database" is Crawlable?

- 1. Train a document classifier.
- 2. Using a crawler, download all documents from the web database.
- 3. Classify each document using the document classifier from Step 1.
- 4. Classify the database based on number of documents in each category.

Data Engineering Bulletin, March 2002

Crawling- vs. Query-based Classification for 5 Databases

URL	Brief Description	Category
http://www.cnnsi.com/	CNN Sports Illustrated	Sports
http://www.tomshardware.com/	Tom's Hardware Guide	Computers
http://hopkins-aids.edu/	Johns Hopkins AIDS Service	AIDS
http://odyssey.lib.duke.edu/	Duke University Rare Books	Literature
http://www.osti.gov/	Office of Scientific and Technical Information	Science

	Crawling-	based Clas.	sification	Query-based Classification			
Database	Time	Files	Size	Time	Queries	Size	
CNN Sports Illustrated	1325 min	270,202	8 Gb	2 min (-99.8%)	112	357 Kb (-99.9%)	
Tom's Hardware Guide	32 min	2,928	105 Mb	3 min (-90.6%)	292	602 Kb (-99.7%)	
Johns Hopkins AIDS Service	13 min	1,823	17 Mb	1 min (-92.3%)	314	723 Kb (-95.7%)	
Duke University Rare Books	2 min	3,242	16.5 Mb	3 min (+50.0%)	397	1012 Kb (-93.8%)	
Office of Scientific	210 min	30,749	416 Mb	2 min (-99.0%)	174	423 Kb (-99.8%)	
and Technical Information							

Stability of Classification as Crawling Progresses

% Crawled	10%	30%	50%	60%	70%	100%
	Cycling	Cycling	Cycling	Cycling	Sports	Sports
CNN Sports	Multimedia	Multimedia	Multimedia			
Illustrated	P = 0.5	P = 0.5	P = 0.5	P = 1.0	P = 1.0	P = 1.0
	R = 0.09	R = 0.09	R = 0.09	R = 0.09	R = 1.0	R = 1.0
	Computers	Computers	Computers	Computers	Computers	Computers
Tom's Hardware	Rock	Rock	Rock	Rock	Rock	Rock
Guide	P = 0.91	P = 0.91	P = 0.91	P = 0.91	P = 0.91	P = 0.91
	R = 1.0	R = 1.0	R = 1.0	R = 1.0	R = 1.0	R = 1.0
Johns Hopkins	AIDS	AIDS	AIDS	AIDS	AIDS	AIDS
AIDS Service	P = 1.0	P = 1.0	P = 1.0	P = 1.0	P = 1.0	P = 1.0
	R = 1.0	R = 1.0	R = 1.0	R = 1.0	R = 1.0	R = 1.0
	Poetry	Poetry	Poetry	Poetry	Poetry	Poetry
	Texts		Texts	Texts	Texts	Texts
Duke University	Classics					
Rare Books	History					
	Photography					
	P = 0.6	P = 1.0	P = 1.0	P = 1.0	P = 1.0	P = 1.0
	R = 0.6	R = 0.2	R = 0.4	R = 0.4	R = 0.4	R = 0.4
Office of Scientific and	Biology	Root	Root	Biology	Biology	Biology
Technical Information	P = 1.0	P = 0.25	P = 0.25	P = 1.0	P = 1.0	P = 1.0
	R = 0.33	R = 1.0	R = 1.0	R = 0.33	R = 0.33	R = 0.33

Beyond Original Setting

- Adapting reformulation to other search-engine interfaces (e.g., Boolean vs. vector-space)
- Exploiting other document classifiers
 - Not rule-based: SVMs, Bayesian models, C4.5
 - Rules extracted from learned models

Query-based Database Classification

- Easy classification using just a few queries
- No need for document retrieval
 - Only need to identify a line like: "82 matches found"
 - "Wrapper" needed is trivial
- Not limited to hidden-web databases: query-based approach sometimes orders of magnitude more efficient than crawling

Outline of Talk

- Classification of Hidden-Web Databases
- Search over Hidden-Web Databases
- Overview of Columbia's Database Group

Interacting With Searchable Text Databases

- Searching: Metasearchers
- Browsing: Yahoo!-like directories
 - InvisibleWeb.com
 - SearchEngineGuide.com

Health > Publications > PubMed

Three Main Metasearcher Tasks

- Database Selection: Choosing best databases for a query
- Query Translation: Translating query for each chosen database
- Result Merging:

Combining query results from chosen databases

Database Selection Step Needs Database "Content Summaries"

Typically the vocabulary of each database plus simple frequency statistics:

PubMed (3,868,552 documents)				
cancer	1,398,178			
aids	106,512			
heart	281,506			
hepatitis	23,481			
thrombopenia	24,826			
•••				

Metasearchers Provide Access to Distributed Databases

Extracting a Document Sample for Content Summary Construction

- 1. Train a (rule-based) document classifier.
- 2. Transform classifier rules into queries.
- 3. Adaptively send queries to databases.
 - Retrieve top-k matching documents for each query.
 - Save #matches for each one-word query.
- 4. Categorize databases based on number of query matches.
 - Representative document sample

Output:

• Actual frequencies for some "important" words, from queries

Adjusting Document Frequencies

- We know ranking r of words according to document frequency in sample
- We know absolute document frequency f of some words from *oneword queries*
 - Mandelbrot's formula connects empirically word frequency f and ranking r
 - We use curve-fitting to estimate the absolute frequency of **all words** in sample

Actual PubMed Content Summary

PubMed (3,868,552 documents) Categories: Health, Diseases

cancer	1,398,178
aids	106,512
heart	281,506
hepatitis	23,481
basketball	907
cpu	487

- Extracted **automatically**
- ~ 27,500 words in extracted content summary
- Fewer than 200 queries sent
- At most 4 documents retrieved per query

Database Selection and Extracted Content Summaries

- Database selection algorithms assume complete content summaries
- Content summaries extracted by (small-scale) sampling are inherently incomplete (Zipf's law)
- Queries with undiscovered words are problematic

Database Classification Helps:

Similar topics ↔ Similar content summaries Extracted content summaries complement each other

Content Summaries within Category Complement Each Other

Hierarchical DB Selection: Example

To select **D** databases:

- Use "flat" DB selection algorithm to score categories
- 2. Proceed to category with highest score
- 3. Repeat until category is a leaf, or category has fewer than **D** databases

Hierarchical Hidden-Web Database Sampling and Selection

- We extract content summaries efficiently from "uncooperative" hidden-web databases
- We estimate absolute word frequencies
- We improve effectiveness of hierarchical database selection by exploiting database classification

Content summary extraction code available at: http://sdarts.cs.columbia.edu

Outline of Talk

- Classification of Hidden-Web Databases
- Search over Hidden-Web Databases
- Overview of Columbia's Database Group

My Columbia Database "Sub-group"

Faculty Luis Gravano

Ph.D. Students Eugene Agichtein Nicolas Bruno Wisam Dakka Panos Ipeirotis Amélie Marian

Some Themes

- "Top-*k*" query processing
- Information extraction from web resources
- (Distributed) web search
- Web "mining"
- •

"Top-*k*" Query Processing over Web-Accessible Sources – Amélie Marian

Top-*k* **Query:** Specification of (flexible) preferences

"Italian restaurants near my home for <\$25"

Answer: Best *k* answers according to distance function

- Goal is to minimize number of remote queries.
- A challenge is to handle different source access capabilities.

IEEE ICDE'02

Efficient Information Extraction with Minimal Training – Eugene Agichtein

	Organization	Location
<i>Microsoft</i> 's central headquarters in <i>Redmond</i> is home to almost every product group and division.	Microsoft	Redmond
Brent Barlow, 27, a software analyst and beta-tester at <i>Apple Computer</i> 's headquarters	Apple Computer	Cupertino
in <i>Cupertino</i> , was fired Monday for "thinking a little too different."	Nike	Portland

Apple's programmers "think different" on a "campus" in *Cupertino, Cal Nike* employees "just do it" at what the company refers to as its "World Campus," near *Portland, Ore.*

Extracting Relations from Text: **Snowball**

- •Exploit redundancy on web to focus on "easy" instances
- •Require only minimal training (handful of seed tuples)

ORGANIZATION	LOCATION
MICROSOFT	REDMOND
IBM	ARMONK
BOEING	SEATTLE
INTEL	SANTA CLARA

ACM DL'00

Information Extraction is Expensive

- Efficiency is a problem even after information extraction system is trained
- Example: NYU's Proteus extraction system takes around 7 seconds per document
- Can't afford to "scan the web" to process each page!

Querying For Efficient Extraction: QXtract

"Sub-Expression Statistics" in Relational Query Optimization – Nico Bruno

- Relational query optimizers rely on cost estimates to choose query execution plans.
- Plan costs heavily influenced by cardinalities of sub-expressions of queries.
- Optimizers estimate such cardinalities using simplifying assumptions.

Approach: Identify "sub-expression statistics" to maintain and incorporate into query optimization

Some Links

http://www.cs.columbia.edu/~gravano

- **Snowball**, an information-extraction system http://snowball.cs.columbia.edu
- **QProber**, a system for classifying and searching "hidden-web" text databases http://qprober.cs.columbia.edu
- **SDARTS**, a protocol and toolkit for metasearching http://sdarts.cs.columbia.edu
- **RANK:** top-*k* query processing http://rank.cs.columbia.edu
- **PERSIVAL**, personalized search and summarization over multimedia information http://persival.cs.columbia.edu