Programming
with
L ogic and Objects

Michael Kifer
Stony Brook University



Outline

Introduction: About FLORA-2

F-logic

HiLog

Example of an application of FLORA-2
Transaction Logic (if time permits)



| ntroduction



What’ s Wrong with
Classical Programming with Logic?

* Precisdly that it Is based on classical logic:

— Essentially flat data structures (relations with
structs)

— Awkward meta-programming

— |lI-suited for modeling side effects (state
changes, 1/0O)



What is FLORA-27?

F-L ogic tRANdator (the next generation)

— FLORA-2 programs are trandlated into XSB & executed by the XSB tabling
Inference engine

L anguage for knowledge-based applications
— Declarative — much more so than Prolog
— Object-oriented (frame based)
Overcomes most of the usability problems with Prolog
Practical & usable programming environment based on
— F-logic (Frame Logic) © objects + logic (+ extensions)
— HiLog — high degree of truly declarative meta-programming
— Transaction Logic — database updates + logic

Builds on earlier experience with implementations of F-logic:
FLORID, FLIP, FLORA-1 (which don’t support HiLog &
Transaction Logic)

http://flora.sourceforge.net



Applications of FLORA-2

Ontology management (Semantic Web)
Information integration

Software engineering

Agents

Anything that requires manipulation of
complex structured (especially semi-
structured) data



Other F-logic Based Systems

* No-name system (U. Melbourne— M. Lawley) —early 90's; first
Prol og-based implementation

e FLORID (U. Frelburg— Lausenet al.) — mid-late 90's; the only
C++ based implementation

 FLIP (U. Freiburg — Ludaescher) — mid 90's; first XSB based
Implementation. Inspired the FLORA effort

 TFL (U.Vaencia— Cars) —mid 90’s; first attempt at F-logic +
Transaction Logic
o JLRI (Karlsruhe— Decker et al.) —late 90’ s; Java based

 TRIPLE (Stanford — Decker et al.) — early 2000's; Java

v FLORA-2 — most comprehensive and general purpose of all
these



F-Logic



Usability Problems with Fat Data Representation

Typical result of translation from the E-R diagram:

Per son SN Name PhoneN Child
111-22-3333 | Joe Public 516-123-4567 222-33-4444
111-22-3333 | Joe Public 516-345-6789 222-33-4444
111-22-3333 | Joe Public 516-123-4567 333-44-5555
111-22-3333 | Joe Public 516-345-6789 333-44-5555
222-33-4444 | Bob Public 212-987-6543 444-55-6666
222-33-4444 | Bob Public 212-987-1111 555-66-7777
222-33-4444 | Bob Public 212-987-6543 555-66-7777
222-33-4444 | Bob Public 212-987-1111 444-55-6666

Problem: redundancy due to dependencies
Person = (SSN\,Name,PhoneN) <] (SSN,Name,Child)
SSN — Name




Normalization That Removes Redundancy

Personl Phone
SSN Name SSN PhoneN
111-22-3333 516-345-6789
111-22-3333 | Joe Public 111-22-3333 | 516-123-4567
222-33-4444 | Bob Public 222-33-4444 212-987-6543
222-33-4444 212-135-7924
SSN Child
111-22-3333 222-33-4444
111-22-3333 333-44-5555 ChildOf
222-33-4444 A44-55-6666
222-33-4444 555-66-7777




But querying is still cumbersome:
Get the phone#’ s of Joe' s grandchildren.

Against the original relation — complex:

SELECT G.PhoneN
FROM Person P, Person C, Person G

WHERE P.Name = ‘Joe Public’ AND
P.Child= C.SSN AND C.Child = G.SSN

Against the decomposed relations — even more So:

SELECT N.PhoneN

FROM  ChildOf C, ChildOf G, Personl P, Phone N

WHERE P.Name="‘Joe Public’ AND P.SSN = C.SSN AND
C.Child=G.SSN AND G.SSN = N.SSN



O-0 approach: rich types and better query language

Schema:
Person(SSN: String,
Name: String, T .
PhoneN: {String}, ... Setdaatypes
Child: {Person} )

- No need to decompose in order to eliminate redundancy

Query: e .l Pathexpres ons
SELECT P.Child.Child. PhoneN

FROM Person P
WHERE P.Name = ‘Joe Public’

— Much simpler query formulation



Basic |deas Behind F-Logic

Take complex data types as in object-oriented
databases

Combine them with logic
Keep it clean — no ad hoc stuff
Use the result as a programming/query language



F-Logic Features

Objects with complex internal structure
Class hierarchies and inheritance

Typing
Encapsulation

Background:

— Basic theory: [Kifer & Lausen SIGMOD-89], [Kifer,Lausen,Wu JACM-95]
— Powerful path expression syntax: [Frohn, Lausen, Uphoff VLDB-84]

— Semantics for non-monotonic inheritance: [Yang & Kifer, ODBASE 2002]
— Meta-programming + other extensions. [Yang & Kifer, ODBASE 2002]



F-logic. ssimple examples

ij ect d
g Si ngl e-val ued attribute
Obj ect descrlptlon """""""
John[ﬂa'r‘ﬁ‘e% John Doe’, phones >>{6313214567, 6313214566}

children- >>{anne, allce}]

Structure can be nested:

sally[spouse - > john[address- > ‘123 Main St.’] |



Examples (contd.)

| SA hierarchy:.

john : person - class membership
mary . person
alice: student

student :: person - subclass relationship



Examples (Contd.)

Methods: like attributes, but take arguments
Pl ageAsO ( Year ) >Age] . --
P: person, P[born->B], Age is Year-B.
Queries:

?-- J ohn[ born->Y, children->>C],
Cl born>B], Z is Y+30, B>Z

John'’ s children who were born when he was over 30.



Examples (Contd.)

Type signatures:

person[born => integer,
ageAsOf(integer) => integer,
name=> string,
children =>> person].

Can define signatures as facts or via deductive rules;
Sgnatures can be queried.

Type correctness has logical meaning (as“ runtime” constraints).




Syntax
|SA hierarchy:

« O:C -- object Oisamember of classC
e C.:S-- Cisasubclassof S

Structure;

e OIM—>S5 - scalar (single-valued) invocation of method
e O[M->>5] - sat-valued invocation of method

Type (signatures):
o Typeobj[Meth => Resulttype] —ascaar method signature
o Typeobj[Meth =>> Resulttype] — signature for a set-valued method

Combinations of the above: V, /\, negation, quantifiers

O,C,M,Typeobj, ... — usual first order function terms, e.g.,
john, AsOf(Y), foo(bar,X).



More Examples

Browsing | SA hierarchy:
?- john: X.
?- student ::Y

Virtual (view) class:

X :redcar : - X:car, X[color -> red].

Schema browsing:

Olattrg(Class) - >> A] : - -==-.::-.-.::::‘.'.’.'.’.f.iii_\\
(O[A-> V; A->>V]), V:Class

Parameterized classes:
[]:list(T).
[X|L]:list(T) : - X:T, L:list(T).

E.g., list(integer), list(student)

" Rule defines method, which |

retur ns attributes whose
rangeisclass Class



Semantics

Herbrand universe: HB — set of all ground terms
Interpretation: 1 = (HB,l..l.--,] <)
where < : partial order on HB
I : binary relationship on HB
l.: HB® (HB"®" HB)

.. HB® (HB'® powersetOf(HB))

| | = o[m >V] If I..(m)(0) =v
I[=o[m>>v] if vI l..(m)(0)
| | = 0.C If ol C
| | =cC:S If c<s

« \Won’t discuss typing



Proof Theory

* Resolution-based
e Sound & complete w.r.t. the semantics



Inheritance in F-logic

El ephant [ col or >gr ey]

' royal El ephant [ col or >whi t €]

fred

.‘D
clyde e

.—-—> =
ffff

Should conclude: e —
fred[ col or >grey] e
cl yde[ col or >whi t €]



The Problem with Rules

 Inheritanceis hard to even define properly
In the presence of rules.

a[m->v] . derived
o I ‘.

\ ps
[
v S

° c[m- > w ] e cm->w] : - am->Vj

7/
)
R N
’ ‘»\_\

Severd other

) ¥ s - . |
b[m->v] defeated?: non-obvious cases exist




Inheritance (Contd.)

« Hard to define semantics to multiple inheritance
+ overriding + deduction; several semantics

might be “reasonable”

e Theorigina semanticsin [Kifer,Lausen,Wu
JACM-95] was quite problematic

* Problem solved in [Yang&Kifer ODBASE 2002]



HiLog



HiLog

Allows certain forms of logically clean
meta-programming

Syntactically appears to be higher-order, but
semantically s first-order and tractable
Has sound and complete proof theory

Chen,Kifer,Warren JLP-93]




Examples of HiLog

Variables over predicates and function symbols
p(X.)Y) - X(aZ), Y(Z(b)).

Variables over atomic for mulas:
cal(X) : -

HiLog in FLORA-2 (e.g., method browsing):
O[unaryMethods(Class) ->> M] :--
O[‘I'\/I(_) -> V; M) ->>V], V:Class.

| Reification |
.-~ [Yang&Kifer ODBASE 2002] !

john[believes- >> ${ mary[likes- >> bob ]} ]



Applications



Applications

Web information extraction agents (XSB, Inc.’s
prototype; FLORA-1)

Info integration in Neurosciences (San Diego
Supercomputing Institute; FLORA-1)

Ontology management (Daimler-Chrysler; FLORA-2)
CASE tool (U. Vaencia;, FLORA-2)
Stony Brook CS Grad Program Manager (FLORA-2)



SBCS Graduate Program Manager

Need to keep track of |ots of special cases

 MS, PhD status over time; with/without support
Types of support over time (RA/TA/fellowships, permanent/temporary)
PhD examinations (with history of failures, conditions); N/A to MS
Teaching history
Advisors over time

TA assignments

e 35+ COUrses
e 70 TAs, ~50 guaranteed, ~50 wannabees (waitlist)

— Preferences/skills
— English proficiency test results, etc., etc.

Need complex aggregate reports
Very complicated

— Hard to figure out the right database schema (still evolving)
— Data highly semistructured




SBCS Grad Manager (Contd.)

e \Was hard-pressed: didn’t have thetimeto do it
In Javal/JDBC (also: maintenance would have
been a serious problem afterwards)

e FLORA-2 wasideal for this;

» Objects don’t need to have exactly the same structure

» Changes of object schema (usually) don’t require
changes to old rules/queries — low maintenance overhead

e Took only 2 weeksfor initial version including
data entry and debugging FL ORA-2 itsdlf!
— Had some fun doing the otherwise boring job



Student Data— Highly Semi-structured

"""" -+ Anonymous oid

:' 417 student
“Tlast ->‘Doe, first ->‘Mary', email ->‘marydoe@yahoo.com’,

joined - >fall(1999), graduated - > futuredate, ... Hackery to improve

advisor - >> #(_#1)[who > Johndoe smce >fa||(1999)] indexing

_____________

______

_________________
_——r

_______

quals -> _#L#l)[passed -> date(ZOOO 10), hlstory >> data(2000, 5)]
defense -> #( #1)[passed - > futuredate],
\domestlc -rmmeennees -
taught ->>{ _#(_#1)[course- >cseb29, semester - >fa||(2000) load - >05]
_#(_#1)[course- >cse310, semester - >fa||(2000) load - >0.5], .
_#(_#1)[course- >cse305, semester - >spr|rtg(2001)] }, ,
canteach ->>{cse332,cse336,cse333,cse230,c5e528} e T
].

Variations in structure

| Can bemissing




Course Data— Also Semistructured

cse505 : course|
name ->'Computing with Logic',
offerings ->> {
_#[semester -> fall(2001),
Instructors - >> {cram},
enrollment -> 15,
],
_#[semester - > fall(2002),
Instructors - >> {warren},
enrollment -> 25

]. | Varlatlonln i
structure



Course Data (Contd.)

cse334 : course|

corosslisted ->> ise334, &
offerings ->> { I .
_#[semester -> fall(2001), -y Variationin
instructors ->> {tony, rong}, L\’?_ﬂf_ucture l
enroliment -> 182,

waiting -> 0,
need grad ta -> 2,

_______________________________________

ug_ta ->> {
‘John, Public (jp@aol.com)’,
“..._ ‘Blow, Joe (jblow@ic.sunysb.edu)’



|nstructor Data

ted:lecturer[name->'Ted Teng'].
robkelly:lecturer[name->'Rob Kelly'].

ari:-faculty[name -> 'Ari Kaufman', section587 -> 19].
skiena:faculty[name -> 'Steve Skiena'l.
kifer:faculty[name -> 'Michael Kifer', section587 -> 9.



Main Meta-Query

%% Sorted report main entry. Arguments:

%% PrintMethod (what info about students to print)
%% SortSpec (how to sort output)
%% QuerySpec (which students to retrieve) oo

Class[#sprlntquery(PrlntMethod SortSpec, QuerySpec)] _ |
= collectset{Var | (O:Class)@students, ~-=="---"""w___ 2= . .
%% Bind Query/SortSpec to the same oid
SortSpec = sortSpec(Path,O,Val),
QuerySpec = querySpec(O QueryCond)

Path,
QueryCond, -----------------
Var = Val-O , Used .

1, .. fefication
keysort(L,SortedL)@prolog(), —eecceee [
Class[#printlist(PrintMethod, SortedL)] -7 Call toprolog
length(SortedL,Count)@prolog(basics), .__Mmodule

format('Total ~w count: ~w~w’, [Class, Count])@prolog().



Pragmatics

Very flexible module system
— Can load programs into modules on-the-fly
— Can create modules at run time and put a program into it

— Prolog environment with its own module system is viewed as a
set of “prolog modules’

— FLORA-2 can call Prolog modules and Prolog can call
FLORA-2 modules

Anonymous OIDs (also useful in RDF and the like)
| nput/Output — use Prolog’s
Prolog cuts — non-logical, but useful



Transaction Logic



Transaction Logic

A logic of change

Unlike temporal/dynamic/process logics, it

Isalso alogic for programming (but can be

used for reasoning as well)

In the object-oriented context:

— A logic-based language for programming object
behavior (methods that change object state)

[Bonner& Kifer, TCS 1995 and |ater]



What’ s Wrong with Logics of Change?

e Designed for reasoning, not programming
 E.g., Situation calculus, temporal, dynamic, process logics

» Typically lack such basic facility as subroutines

* None became the basis for a reasonably useful
programming language



What’' s Wrong with Prolog?

o assert/retract have no logical semantics
* Non-backtrackable

* Prolog programs with updates are the
hardest to write, debug, and understand



Example: Stacking a Pyramid

stack(0,X).
stack(N,X) -- N>0, move(Y,X), stack(N-1,Y).

move(X,Y) =- pickup(X), putdown(X,Y).
pickup(X) :-- clear(X), on(X,Y), retract(on(X,Y)), assert(clear(Y)).
putdown(X,Y) -- wider(Y,X), clear(Y), assert(on(X,Y)), retract(clear(Y)).

Action:
?— stack(18,block32). % stack 18-block pyramid on top of block 32

Note:
Prolog won't execute this very natural program correctly!



Syntax

o Serial conjunction, A
e aAb —do athendo b

e Theusual \,V,~, " ,$ (butwith adifferent
semantics)
« aV(bAc)/A\(dV-e

e a¢<bh©° aVV-b

« Means. to execute & must execute D



Semantics

e Thebasic ideas
— Execution path © sequence of database states
— Truth values over paths, not over states
— Truth over apath © execution over that path

— Elementary state transitions© propositions that cause a
priori defined state transitions



Semantics




Semantics

The semantics makes updates |ogical

<77 pahp

Q O O O Q

action _/

true Post-condition

false

If action is true, but postcondition false, then
action A postcondition isfalse on p.

In practical terms. updates are undone on backtracking.



Proof Theory

To provef, triesto find a path, p, wheref Istrue

=> executesf asit provesit (and changes the
underlying database state from the initial state of p
to the final state of p)



Pyramid Building (again)

stack(0,X).
stack(N,X) -- N>0 A move(Y,X) A stack(N-1,Y).

move(X,Y) - pickup(X) A putdown(X,Y).

pickup(X) - clear(X) A on(X,Y) A delete(on(X,Y)) A insert(clear(Y)).
putdown(X,Y) :-- wider(Y,X) A clear(Y) A insert(on(X,Y)) A delete(clear(Y)).

?— stack(18,block32). % stack 18-block pyramid on top of block 32

« Under the Transaction Logic semantics the above program
does the right thing



Constraints

« Can express not only execution, but all kinds of
sophisticated constraints:

?— stack(10, block43)
A" XY ((move(X,Y) A color(X,red)) =>$ Z(color(Z,blue) A move(Z,X)))

Whenever a red block is stacked, the next block stacked must be blue

» Has been shown useful for process modeling
(Davulcu et. al. PODS-97, Thesis 2002, Senkul et. al.
VLDB-02)



Reasoning

e Can beusaed to reason about the effects of
actions [Bonner&Kifer 1998]



Integration into FLORA-2

 FLORA-2 provides
— btinsert{ Template | Query}
— btdelete{ Template | Query}
— bterase{ Template | Query}

— And other “elementary” updates that behave
according to the semantics of Transaction Logic

e FLORA’s “” then servesas i and«» asV,
which allows us to build larger and larger
transactions




Pragmatics

 FLORA-2 aso provides non-logical updates
that are similar, but more powerful to
Prolog’s

e Logica updates + Prolog cuts

— can be used to implement “partial commit” of
transactions

— have perfect sense in databases, but
(unfortunately) not in Transaction Logic



Conclusion

e FLORA-2
° F-logic + HiLog + Transaction Logic + XSB
° Logic + Objects + Meta-programming
+ State changes + Implementation



Future Work

o XSB: hasanumber of problems that spoil the
party
— Limitations on cuts (will be fixed in the future)
— Problems with updates
— Bad interaction between tabling and updates

e FLORA-2:
— Interfaces to databases, C, Java

— Additional features. encapsulation, various
optimizations



