
3/22/2001 Paul Larson, View matching 1

Optimizing Queries Using Optimizing Queries Using
Materialized ViewsMaterialized Views

Paul Larson & Jonathan Goldstein
Microsoft Research

3/22/2001 Paul Larson, View matching 2

Materialized viewsMaterialized views

l Precomputed, stored result defined by a view
expression

l Faster queries but slower updates
l Issues

– View design
– View exploitation
– View maintenance

l View exploitation: determine whether and how a
query (sub)expression can be computed from
existing views

3/22/2001 Paul Larson, View matching 3

Query optimizationQuery optimization

l Generate rewrites, estimate cost, choose
lowest-cost alternative

l Generating rewrites in SQL Server
– Apply local algebraic transformation rules to

generate substitute expressions
– Logical exploration followed by physical

optimization
– View matching is a logical rule that fires a view

matching algorithm

3/22/2001 Paul Larson, View matching 4

Example viewExample view

create view v1 with schemabinding as
select s_suppkey, s_name, s_nationkey,

count_big(*) as cnt,
sum(l_extendedprice*l_quantity) as grv

from dbo.lineitem, dbo.supplier
where p_partkey < 1000
and l_suppkey = s_suppkey

group by s_suppkey, s_name, s_nationkey

create unique clustered index v1_cidx on v1(s_suppkey)

create index v1_sidx on v1(grv, s_name)

3/22/2001 Paul Larson, View matching 5

Example queryExample query
Select n_nationkey, n_name,

sum(l_extendedprice*l_quantity)
from lineitem, supplier, nation
where l_partkey between 100 and 500
and l_suppkey = s_suppkey
and s_nationkey = n_nationkey

group by n_nationkey, n_name

Execution time on 1GB TPC-R database: 99 sec (cold), 27 sec (hot)

3/22/2001 Paul Larson, View matching 6

Rewrite using v1Rewrite using v1
Select n_nationkey, n_name, smp
from (select s_nationkey,

sum(l_extendedprice*l_quantity) as smp
from lineitem, supplier
where l_suppkey = s_suppkey
and l_suppkey between 100 and 500

group by s_nationkey) as sq1,
nation

where s_nationkey = n_nationkey

Select n_nationkey, n_name, smp
from (select s_nationkey, sum(grv)as smp

from v1
where s_suppkey between 100 and 500
group by s_nationkey) as sq1,
nation

where s_nationkey = n_nationkey
Execution time on 1GB TPCD-R database: less than 1 sec

3/22/2001 Paul Larson, View matching 7

Outline of the talkOutline of the talk

l View matching algorithm
– Algorithm overview
– SPJ expressions, same tables referenced
– Extra tables in the view
– Grouping and aggregation

l Fast filtering of views
l Experimental results

3/22/2001 Paul Larson, View matching 8

Design objectivesDesign objectives

l SPJG views and query expressions
l Single-view substitutes
l Fast algorithm
l Scale to hundreds, even thousands of views

3/22/2001 Paul Larson, View matching 9

Algorithm overviewAlgorithm overview

1. Quickly dismiss most views that cannot be
used

2. Detailed checking of remaining candidate
views

3. Construct substitute expressions

3/22/2001 Paul Larson, View matching 10

When can a SPJ expression When can a SPJ expression
be computed from a view?be computed from a view?

l View contains all required rows
l The required rows can be selected from

the view
l All output expressions can be computed

from the view output
l All output rows occur with the right

duplication factor (not always required)

3/22/2001 Paul Larson, View matching 11

Column equivalence classesColumn equivalence classes

l W = PE and PNE
– PE = column equality predicates (R.Ci = S.Cj)
– PNE = all other predicates

l Compute column equivalence classes using PE
l Columns in the same equivalence class

interchangeable in PNE, output expressions, and
grouping expressions

l Replace column references by references to
equivalence classes

3/22/2001 Paul Larson, View matching 12

View contains all required rows?View contains all required rows?

l Assumption: query and view reference the
same tables

lWq ⇒ Wv (containment)
l Pq1∧Pq2∧…∧Pqm ⇒ Pv1∧Pv2∧…∧Pvn

– Convert predicates to CNF
– Check that every Pvi matches some Pqj
– Shallow or deep matching?
– Too conservative – can do better

3/22/2001 Paul Larson, View matching 13

Exploiting column equivalences Exploiting column equivalences
and range predicatesand range predicates

l PEq ∧ PRq ∧PUq ⇒ PEv ∧ PRv ∧Puv
– PE = column equality predicates (R.Ci = S.Cj)
– PR = range predicates (R.Ci < 50)
– PU = residual (uninterpreted) predicates

l PEq ⇒ PEv (Equijoin subsumption)

l PEq ∧ PRq ⇒ PRv (Range subsumption)

l PEq ∧PUq ⇒ PUv (Residual subsumption)

3/22/2001 Paul Larson, View matching 14

EquijoinEquijoin subsumption testsubsumption test

l PEq ⇒ PEv
l Compute column equivalence classes for

the query and the view
l Every view equivalence class must be a

subset of some query equivalence class

3/22/2001 Paul Larson, View matching 15

Range subsumption testRange subsumption test

l PEq ∧ PRq ⇒ PRv
l Compute range intervals for every column

equivalence class (initially (-∞,+∞))
l Check that every query range interval is

contained in a range interval of the
corresponding view equivalence class

3/22/2001 Paul Larson, View matching 16

Residual subsumption testResidual subsumption test

l PEq ∧PUq ⇒ PUv
l Treat as uninterpreted predicates

– Convert to CNF
– Apply predicate matching algorithm, taking

into account column equivalences
– Currently using a shallow matching algorithm

(convert to strings, compare strings)

3/22/2001 Paul Larson, View matching 17

Selecting rows from the viewSelecting rows from the view

l Compensating predicates
– Unmatched column equality predicates from the query
– Range predicates obtained when comparing query and

view ranges
– Unmatched residual predicates from the query

l All column references must map to an output
column in the view (taking into account column
equivalences)

3/22/2001 Paul Larson, View matching 18

Compute output expressionsCompute output expressions

lMap simple column references to view
output columns (taking into account column
equivalences)

l Complex scalar expressions
– Check whether view outputs a matching

expression
– Otherwise, check whether all operand columns

available in view output

3/22/2001 Paul Larson, View matching 19

Correct duplication factor?Correct duplication factor?

l Always true when query and view reference
the same tables

3/22/2001 Paul Larson, View matching 20

Extra tables in the viewExtra tables in the view

l View: R join S join T
l Query: R join S
l View usable if every row in (R join S) joins

with exactly one row in T
l Row-extension join

– Corresponds to a foreign key from S to T
– Foreign key columns must be non-null
– Referenced columns in T must be a unique key

3/22/2001 Paul Larson, View matching 21

View join graph and the hubView join graph and the hub

T1 T2 T4

T3 T5

T6

T7
Hub

Row-extension join

3/22/2001 Paul Larson, View matching 22

If view contains extra tables…If view contains extra tables…

l Compute hub of view join graph
l Hub must be a subset of tables used in the

query
l Logically add the extra tables to the query

through row-extension joins
– Just modify query’s column equivalence classes

l Proceed normally because query and view
now reference the same tables

3/22/2001 Paul Larson, View matching 23

GroupGroup--by queries and viewsby queries and views

l SPJ part of view contains all required rows
and with correct duplication factor

l Compensating predicates computable
l View less or equally aggregated
l Query grouping columns available if further

grouping required
l Query output expressions computable

3/22/2001 Paul Larson, View matching 24

Further aggregationFurther aggregation

l GB list of query must be a subset of GB list
of view

l Query must use only partitionable
aggregates
– Count, sum, min, max

3/22/2001 Paul Larson, View matching 25

Example view and queryExample view and query
Create view SalesByCust with schemabinding as
Select c_custkey, c_name, c_mktsegment, n_name,

count_big(*) as cnt, sum(o_totalprice)as stp
from orders, customer, nation
where c_custkey between 1000 and 5000
and o_custkey = c_custkey
and c_nationkey = n_nationkey

group by c_custkey, c_name, c_mktsegment, n_name

Select c_mktsegment, sum(o_totalprice)
from orders, customer
where c_custkey between 1000 and 2000
and o_custkey = c_custkey

group by c_mktsegment

3/22/2001 Paul Larson, View matching 26

Rewritten example queryRewritten example query

l View hub {orders} subset of {orders, customer}
l Compensating predicate (c_custkey <= 2000)

computable
l Query GB-list subset of view GB-list
l Output expressions computable

Select c_mktsegment, sum(stp)
from SalesByCust
where c_custkey <= 2000
group by c_mktsegment

3/22/2001 Paul Larson, View matching 27

Fast filtering of viewsFast filtering of views

l View descriptions in memory
l Too expensive to check all views each time
l Filter tree – index on view descriptions
l Tree subdivides views into smaller and

smaller subsets
l Locating candidate views by traversing

down the tree

3/22/2001 Paul Larson, View matching 28

Filter tree structureFilter tree structure

Key (set)
Pointers Filter tree node

Lattice index

3/22/2001 Paul Larson, View matching 29

Source table conditionSource table condition

l TSv = set of tables referenced in view
l TSq must be a subset of TSv
l Subdivide views based on set of tables

referenced
l Filter tree node with key = table set

3/22/2001 Paul Larson, View matching 31

Hub conditionHub condition

l View hub must be a subset of query’s
source tables

l Add another level to the tree
l One tree node for each subset of views
l Further subdivide each set of views based

on view hubs

3/22/2001 Paul Larson, View matching 33

Other partitioning conditionsOther partitioning conditions
l Output columns

– View’s output columns must be a superset of query’s
output columns

l Grouping columns
– View’s GB list must be a subset of view’s GB list

l Range constrained columns
– View’s RC columns must be a subset of query’s RC

columns

l Residual predicates
– View’s RP set must be a subset of query’s RP set

ll Must consider column equivalences everywhereMust consider column equivalences everywhere

3/22/2001 Paul Larson, View matching 34

Experimental resultsExperimental results

l Prototyped in SQL Server code base
l Database: TPC-H/R at 500MB
l Views: up to 1000 views

– Randomly generated, 75% with grouping
l Queries: 1000 queries

– Randomly generated, 75% with grouping
– 2:40%, 3:20%, 4:17%, 5:13%, 6:8%, 7:2%

lMachine: 700 MHz Pentium, 128MB

3/22/2001 Paul Larson, View matching 35

Optimization time for 1000 queries

0

50

100

150

200

250

0 200 400 600 800 1000

No of views

O
p

ti
m

iz
at

io
n

 ti
m

e
(s

ec
)

Alt & No Filter
No Alt & No Filter
Alt & Filter
No Alt & Filter

3/22/2001 Paul Larson, View matching 36

StatisticsStatistics

l About 17.8 invocations per query
l Filter tree was highly effective
l Average fraction of views in candidate set

– 100 views 0.29%, 1000 views 0.36%

l 15-20% of candidates produced substitutes
l Avg. no of substitutes produced per query

– 100 views 0.7, 1000 views 10.5

3/22/2001 Paul Larson, View matching 37

Queries using views in final plan

0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000

No of views

N
o

 o
f

p
la

n
s

u
si

n
g

 v
ie

w
s

3/22/2001 Paul Larson, View matching 38

ConclusionConclusion

l Our view matching algorithm is
– Flexible

l column equivalences, range predicates, hubs

– Fast and scalable
– But limited to SPJG expressions and single-

view substitutes

3/22/2001 Paul Larson, View matching 39

Possible extensionsPossible extensions

l Additional substitutes
– Back-joins to base tables
– Union of views

l Additional view types
– Self-joins
– Grouping sets, cube and rollup
– Outer joins
– Union views

