Optimizing Queries Using
Materialized Views

Paul Larson & Jonathan Goldstan
Microsoft Research

3/22/2001 Paul Larson, View matching

Materialized views

Precomputed, stored result defined by aview
expression

Faster queries but slower updates

| ssues

— View design

— View exploitation

— View maintenance

View exploitation: determine whether and how a
guery (sub)expression can be computed from
existing views

3/22/2001 Paul Larson, View matching

Query optimization

Generate rewrites, estimate cost, choose
lowest-cost aternative

Generating rewrites in SQL Server

— Apply local algebraic transformation rulesto
generate substitute expressions

— Logical exploration followed by physical
optimization

— View matching isalogical rule that fires aview
matching algorithm

3/22/2001 Paul Larson, View matching

Example view

create view vl with schenmabi ndi ng as
sel ect s _suppkey, s nane, s _nationkey,
count _big(*) as cnt,
sun(| _extendedprice*l _quantity) as grv
fromdbo.lineitem dbo.supplier
where p_partkey < 1000
and | _suppkey = s suppkey
group by s suppkey, s nane, s _nationkey

create uni que clustered i ndex vl cidx on vl(s_suppkey)

create I ndex vl sidx on v1(grv, s_nane)

3/22/2001 Paul Larson, View matching

Example query

Sel ect n_nationkey, n_nane,
sun(| extendedprice*l _quantity)
fromlineitem supplier, nation
where | partkey between 100 and 500
and | _suppkey = s _suppkey
and s _nationkey = n_nati onkey
group by n_nationkey, n_nane

Execution time on 1GB TPC-R database: 99 sec (cold), 27 sec (hot)

3/22/2001 Paul Larson, View matching

Rewrite using v1

Sel ect n_nati onkey, n_nane, snp
from (select s _nationkey,
sun(| extendedprice*l~.quantity) as snp
fromlineitem supplier
where | _suppkey = s _suppkey
and | _suppkey between 100 and 500
group by s_nationkey) as sql,
nati on
where s _nationkey = n_nati onkey

Sel ect n_nati onkey, n_nanme, snp

from (select s _nationkey, sun{grv)as snp
fromvl
where s_suppkey between 100 and 500
group by s nationkey) as sql,
nati on

where s _nationkey = n_nati onkey

Execution time on 1GB TPCD-R database: lessthan 1 sec

3/22/2001 Paul Larson, View matching

Outline of the talk

View matching algorithm

— Algorithm overview

— SPJ expressions, same tables referenced
— Extratablesin the view

— Grouping and aggregation

Fast filtering of views

Experimental results

3/22/2001 Paul Larson, View matching

Design objectives

SPJG views and query expressions
Single-view substitutes

Fast algorithm

Scale to hundreds, even thousands of views

3/22/2001 Paul Larson, View matching

Algorithm overview

Quickly dismiss most views that cannot be
used

Detailed checking of remaining candidate
VIEWS
Construct substitute expressions

3/22/2001 Paul Larson, View matching

When can a SPJ expression
be computed from a view?

View contains all required rows

The required rows can be selected from
the view

All output expressions can be computed
from the view output

All output rows occur with the right
duplication factor (not always required)

3/22/2001 Paul Larson, View matching

Column equivalence classes

W = PE and PNE
— PE = column equality predicates (R.Ci = S.Cj)
— PNE = all other predicates
Compute column equivalence classes using PE

Columns in the same eguivalence class
Interchangeable in PNE, output expressions, and
grouping expressions

Replace column references by referencesto
equivalence classes

3/22/2001 Paul Larson, View matching

View contains all required rows?

Assumption: query and view reference the
same tables

Wg P WA (containment)
Pg1UPg2U...UPgm b PviUPv2U...UPVN
— Convert predicatesto CNF

— Check that every Pvi matches some Pqj

— Shallow or deegp matching?
— Too conservative — can do better

3/22/2001 Paul Larson, View matching

Exploiting column equivalences
and range predicates
PEqU PRgUPUgPb PEvU PRvUPuv

PE = column equality predicates (R.Ci =S.Cj)
PR = range predicates (R.Ci < 50)

PU = residual (uninterpreted) predicates
PEg P PEv (Equijoin subsumption)
PEQU PRg b PRV (Range subsumption)
PEq UPUQ P PUV (Residual subsumption)

3/22/2001 Paul Larson, View matching

Equijoin subsumption test

PEq b PEv

Compute column equivaence classes for
the query and the view

Every view eguivalence class must be a
subset of some query equivalence class

3/22/2001 Paul Larson, View matching

Range subsumption test

PEqUPRg P PRv

Compute range intervals for every column
equivalence class (initially (-¥ ,+¥))
Check that every query range interval IS

contained in arange interval of the
corresponding view eguivalence class

3/22/2001 Paul Larson, View matching

Residual subsumption test

PEq UPUqg b PUv
Treat as uninterpreted predicates

— Convert to CNF

— Apply predicate matching algorithm, taking
Into account column equivalences

— Currently using a shallow matching algorithm
(convert to strings, compare strings)

3/22/2001 Paul Larson, View matching

Selecting rows from the view

Compensating predicates
— Unmatched column eguality predicates from the query

— Range predicates obtained when comparing query and
VIiew ranges

— Unmatched residual predicates from the query
All column references must map to an output

column in the view (taking into account column
equivalences)

3/22/2001 Paul Larson, View matching

Compute output expressions

Map simple column references to view
output columns (taking into account column

equivalences)

Complex scalar expressions

— Check whether view outputs a matching
expression

— Otherwise, check whether all operand columns
available in view output

3/22/2001 Paul Larson, View matching

Correct duplication factor?

Always true when query and view reference
the same tables

3/22/2001 Paul Larson, View matching

Extra tables in the view

View: RjoinSjoin T

Quey: Rjoin S

View usable if every row In (R join) joins
with exactly onerow in T

Row-extension join

— Corresponds to aforeign key from Sto T

— Foreign key columns must be non-null
— Referenced columnsin T must be a unique key

3/22/2001 Paul Larson, View matching 20

View join graph and the hub

T O

Hub @ Q
O

3/22/2001 Paul Larson, View matching

If view contains extra tables...

Compute hub of view join graph

Hub must be a subset of tables used in.the
query

Logically add the extra tables to the query
through row-extension joins

— Just modify query’s column equivalence classes

Proceed normally because query and view
now reference the same tables

3/22/2001 Paul Larson, View matching

Group-by queries and views

SPJ part of view contains all required rows
and with correct duplication factor

Compensating predicates computable
View less or equally aggregated

Query grouping columns available if further
grouping required

Query output expressions computable

3/22/2001 Paul Larson, View matching

Further aggregation

GB list of query must be a subset of GB list
of view

Query must use only partitionable
aggregates

— Count, sum, min, max

3/22/2001 Paul Larson, View matching

Example view and query

Create view Sal esByCust wth schenmabi ndi ng as
Sel ect c_custkey, c_nane, c_nktsegnent, n_nane,
count _big(*) as cnt, sun(o_totalprice)as stp
fromorders, custoner, nation
where c_cust key between 1000 and 5000
and o_custkey = c_custkey

and c_nationkey = n_nati onkey
group by c_custkey, c_nane, c_nktsegnent, n_nane

Sel ect c_nktsegnent, sun{o_total price)

from orders, custoner
where c_cust key between 1000 and 2000

and o_custkey = c_custkey
group by c_nktsegnent

3/22/2001 Paul Larson, View matching

Rewritten example qguery

View hub {orders} subset of { orders, customer}
Compensating predicate (c_custkey <=2000)
computable

Query GB-list subset of view GB-list

Output expressions computable

Sel ect c_nktsegnment, sun{stp)
from Sal esByCust
where c_custkey <= 2000

group by c_nktsegnent

3/22/2001 Paul Larson, View matching

Fast filtering of views

View descriptions in memory
Too expensive to check all views eachitime
Filter tree — index on view descriptions

Tree subdivides views into smaler and
smaller subsets

L ocating candidate views by traversing
down the tree

3/22/2001 Paul Larson, View matching

Filter tree structure

L attice Index
Key (set)
Q ‘ ilter tree node
C 1

P29

3/22/2001 Paul Larson, View matching 28

Source table condition

"Sv = set of tables referenced in view
SO must be a subset of TSv

Subdivide views based on set of tables
referenced

Filter tree node with key = table set

3/22/2001 Paul Larson, View matching

Hub condition

View hub must be a subset of query’s
source tables

Add another level to the tree
One tree node for each subset of views

Further subdivide each set of views based
on view hubs

3/22/2001 Paul Larson, View matching

Other partitioning conditions

Output columns

— View’ s output columns must be a superset of query’s
output columns

Grouping columns

— View's GB list must be a subset of view’s GB list

Range constrained columns

— View’s RC columns must be a subset of query’s RC
columns

Residual predicates
— View’'s RP set must be a subset of query’s RP set

Must consider column equivalences everywhere

3/22/2001 Paul Larson, View matching

Experimental results

Prototyped in SQL Server code base
Database: TPC-H/R at 500MB

Views:. up to 1000 views

— Randomly generated, 75% with grouping
Queries. 1000 queries

— Randomly generated, 75% with grouping
— 2:40%, 3:20%, 4:1/%, 5:13%, 6:8%, 7:2%
Machine: 700 MHz Pentium, 128MB

3/22/2001 Paul Larson, View matching

Optimization time for 1000 queries

- -& - Alt & No Filter

- -x - No Alt & No Filter
——Alt & Filter
—=—No Alt & Filter

—~
O
b
2

N—r’
(b)
S

—
c
@)

-
@©

N
S

-
Q.

@)

400 600 800

No of views

3/22/2001 Paul Larson, View matching

Statistics

About 17.8 invocations per query
Filter tree was highly effective

Average fraction of views in candidate set
— 100 views 0.29%, 1000 views 0.36%

15-20% of candidates produced substitutes

Avd. no of substitutes produced per query
— 100 views 0.7, 1000 views 10.5

3/22/2001 Paul Larson, View matching

Queries using views in final plan

/

n
=
2
>
(@))
=
2]
>
7))
c
c
o
Y
o
O
Z

400 600 800

No of views

3/22/2001 Paul Larson, View matching

Conclusion

Our view matching algorithm is

— Flexible
o column equivalences, range predicates, hubs

— Fast and scalable

— But limited to SPJG expressions and single-
view substitutes

3/22/2001 Paul Larson, View matching

Possible extensions

Additional substitutes
— Back-joins to base tables
— Union of views

Additional view types

— Sdf-joins

— Grouping sets, cube and rollup
— Outer joins

— Union views

3/22/2001 Paul Larson, View matching

