A Call to Regularity

Moshe Y. Vardi*

Rice University

*Joint work with D. Calvanese, G. De Giacomo, and M. Lenzerini
Database Query Languages

- Standard database query languages (e.g., SQL 2.0) are essentially 1st-order.

- Aho and Ullman, 1979: 1st-order languages are weak; add recursion

- Gallaire and Minker, 1978: add recursion via logic programs

- SQL 3.0, 1999: recursion added

Expressiveness costs money!!!

- 1st-order queries: LOGSPACE

- Recursive queries: PTIME
Datalog

Datalog:

- Function-free logic programs
- Existential, positive fixpoint logic
- Select-project-join-union-recur queries

Example: *Transitive Closure*

\[
Path(x, y) : − Edge(x, y)
\]
\[
Path(x, y) : − Path(x, z), Path(z, y)
\]

Definition: A program \(P \) is **bounded** if it is equivalent to a non-recursive program.

Example: Impressionable Shopper

\[
Buys(x, y) : − Trendy(x), Buys(z, y)
\]
\[
Buys(x, y) : − Likes(x, y)
\]
Data Complexity

Definitions:

- The *stage function* \(s_P(n) \) of a program \(P \) is the least \(m \) such that \(P^m(D) = P^\infty(D) \) for each \(D \) with at most \(n \) elements.

- A query \(Q \) is in \(STAGE(f(n)) \) if it is expressible by a program \(P \) such that \(s_P(n) \) is in \(O(f(n)) \).

Database complexity and computational complexity:

- \(STAGE(\text{polylog } n) \subseteq NC \)

- \(STAGE(\text{poly } n) \subseteq PTIME \)

Gap Theorem [Kanellakis, 1992]:

- \(P \) is bounded iff it defines a query in \(STAGE(1) \)

- \(P \) is unbounded iff \(s_P \) is in \(\Omega(\log n) \)

Gaifman, Mairson, Sagiv, V., 1987: Boundedness is undecidable.
Research Program - Study Boundary

Parameters:

- Number of derived predicates
- Arity of derived predicates
- Number of rules
- Nonlinear vs. linear (one recursive call per rule)
- I/O convention

GMSV: undecidability holds for linear programs with a single 4-ary derived predicate.
Binary Programs

Binary programs: binary derived predicates.

Theorem [Hillebrand, Kanellakis, Mairson, V., 1995]: *Boundedness is undecidable for programs with a single binary derived predicate.*

Proof: Reduction from halting problem for Turing machines:

- **Σ**: tape alphabet

- **Base predicates**: \(\text{Zero}(x), \text{Succ}(x, y), Q_a(x)\) for \(a \in \Sigma\)

- **Derived predicates**: \(\text{Fing}(x, y)\) – pointers to corresponding positions in successive configurations

Cosmadakis, Gaifman, Kanellakis, V., 1988: Boundedness is decidable for unary programs.
Uniform Boundedness

I/O Conventions:

- **Directed I/O**: input – base predicates, output – derived predicate.
- **uniform I/O**: input/output – all predicates: a program slice

Uniform boundedness: boundedness with respect to the uniform I/O convention.

Sirup: Single recursive rule program

Undecidability of uniform boundedness:

- [GMSV, 1987]: 7-ary programs
- [HKMV, 1995]: 3-ary programs
- [Abiteboul, 1989]: sirups
- [Marcinkowski, 1996]: 3-ary sirups, 3-ary linear programs
Query Containment

Query Optimization: Given Q, find Q' such that:

- $Q \equiv Q'$
- Q' is “easier” than Q

Query Containment: $Q_1 \sqsubseteq Q_2$ if $Q_1(B) \subseteq Q_2(B)$ for all databases B.

Fact: $Q \equiv Q'$ iff $Q \sqsubseteq Q'$ and $Q' \sqsubseteq Q$

Consequence: Query containment is a key database problem.
Query Containment

Other applications:

- query reuse
- query reformulation
- information integration
- cooperative query answering
- integrity checking
- ...

Consequence: Query containment is a fundamental database problem.
Decidability of Query Containment

- **SQL**: undecidable
 - Folk Theorem
 - Poor theory and practice of optimization

- **SPJU**: decidable
 - Rich theory and practice of optimization

- **Datalog**: undecidable
 - Shmueli–1977
 - Difficult theory and practice of optimization

Unfortunately, most decision problems involving Datalog are undecidable - almost no interesting, well-behaved fragments.
1990s: Back to Binary Relations

WWW:

- Nodes
- Edges
- Labels

Semistructured Data: WWW, SGML documents, library catalogs, XML documents, Meta data,

Formally: \((D, E, \lambda)\)

- \(D\) - nodes
- \(E \subseteq D^2\) - edge
- \(\lambda : E \rightarrow \Lambda^+\) – labels (alt., also node labels)
Path Queries

Active Research Topic: What is the right query language for semistructured data?

Basic Element of all proposals: path queries

- $Q(x, y) : - x \ L \ y$
- L: formal language over labels
- $a \cdot l_1 \cdot \ldots \cdot l_k \cdot b$
- $Q(a, b)$ holds if $l_1 \cdot \ldots \cdot l_k \in L$

Example: Regular Path Query

$Q(x, y) : - x \ (Wing \cdot Part^+ \cdot Nut) \ y$
Path-Query Containment

\[Q_1(x, y) : - x \, L_1 \, y \]
\[Q_2(x, y) : - x \, L_2 \, y \]

Language-Theoretic Lemma 1:

\[Q_1 \preceq Q_2 \iff L_1 \subseteq L_2 \]

Proof: Consider a database

\[a \cdot l_1 \cdots l_k \cdot b \] with \(l_1 \cdots l_k \in L_1 \)

Corollary: Path-Query Containment is

- undecidable for context-free path queries
- decidable for regular path queries.
Regular Path Queries

Observations:

- A fragment of Transitive-Closure Logic
- A fragment of binary Datalog
 - Concatenation: \(E(x, y) : - E_1(x, z), E_2(z, y) \)
 - Union: \(E(x, y) : - E_1(x, y) \)
 \(E(x, y) : - E_2(x, y) \)
 - Transitive Closure: \(P(x, y) : - E(x, z) \)
 \(P(x, y) : - E(x, z), E(z, y) \)

Consequence:

- Data complexity: \textit{NLOGSPACE}
- Expression complexity: \textit{PTIME}

Containment: PSPACE-complete, via nondeterministic automata (Stockmeyer, 1973).
Language Containment – Upper Bound

Lemma: \(L(E_1) \subseteq L(E_2) \iff L(E_1) - L(E_2)) = \emptyset \)

Algorithm for checking whether \(L(E_1) \subseteq L(E_2) \):

1. Construct NFAs \(A_i \) such that \(L(A_i) = L(E_i) \) – **linear blow-up**.

2. Construct \(\overline{A_2} \) such that \(L(\overline{A_2}) = \Sigma^* - L(A_2) \) – **exponential blow-up**.

3. Construct \(A = A_1 \times \overline{A_2} \) such that \(L(A) = L(E_1) - L(E_2) \) – **quadratic blow-up**.

4. Check if there is a path from start state to final state in \(A \) – **NLOGSPACE**.

Bottom Line: \(PSPACE \)
Two-Way RPQs

Extended Alphabet: \(\Lambda^- = \{ a^- : a \in \Lambda^+ \} \)

\[\Lambda = \Lambda^+ \cup \Lambda^- \]

Inverse Roles:

\(Part(x, y) : y \text{ part of } x \)

\(Part^-(x, y) : x \text{ part of } y \)

Example: Step Siblings

\(Q(x, y) : -x \quad [(father^- \cdot father) + (mother^- \cdot mother)]^+ \quad y \)

Containment: Two-way nondeterministic automata

- Hopcroft and Ullman, 1979: 2DFA
- Hopcroft, Motwani and Ullman, 2000: ???
2NFA

$A = (\Sigma, S, S_0, \rho, F)$

- Σ – finite alphabet
- S – finite state set
- $S_0 \subseteq S$ – initial states
- $F \subseteq S$ – final states
- $\rho : S \times \Sigma \rightarrow 2^S \times \{-1, 0, +1\}$ – transition function

Theorem: Rabin&Scott, Shepherdson, 1959

$2\text{NFA} \equiv 1\text{NFA}$
2RPQ Containment

Difficulties:

- **2NFA → 1NFA**: exponential blow-up

 - **Consequence**: Doubly exponential complementation

- Difference between query and language containment

 - \(Q_1(x, y) : \neg x \text{ Parent } y \)

 - \(Q_2(x, y) : \neg x \text{ Parent } \cdot \text{ Parent}^- \cdot \text{ Parent } y \)

- \(Q_1 \sqsubseteq Q_2 \) but

 \[L(\text{Parent}) \not\subseteq L(\text{Parent } \cdot \text{ Parent}^- \cdot \text{ Parent}) \]
Back to Basics: 2NFA→1NFA

Theorem: Vardi, 1988

Let $A = (\Sigma, S, S_0, \rho, F)$ be a 2NFA. There is a 1NFA A^c such that

- $L(A^c) = \Sigma^* - L(A)$
- $|A^c| \in 2^{O(||A||)}$

Proof: Guess a subset-sequence counterexample

$a_0 \cdots a_{k-1} \notin L(A)$ iff there is a sequence T_0, T_1, \cdots, T_k of subsets of S such that

1. $S_0 \subseteq T_0$ and $T_k \cap F = \emptyset$.

2. If $s \in T_i$ and $(t, +1) \in \rho(s, a_i)$, then $t \in T_{i+1}$, for $0 \leq i < k$.

3. If $s \in T_i$ and $(t, 0) \in \rho(s, a_i)$, then $t \in T_i$, for $0 \leq i < k$.

4. If $s \in T_i$ and $(t, -1) \in \rho(s, a_i)$, then $t \in T_{i-1}$, for $0 < i \leq k$.
Foldings

Definition: Let $u, v \in \Lambda^*$. We say that v **folds** onto u, denoted $v \leadsto u$, if v can be “folded” on u, e.g.,

$$abb^{-}bc \leadsto abc.$$

Pictorially,

$$\begin{array}{cccccc}
a & \rightarrow & . & b & \rightarrow & . \leftarrow & . & b & \rightarrow & c & \leadsto & a & \rightarrow & . & b & \rightarrow & . & c \\
\end{array}$$

Definition: Let E be an RE over Λ. Then $fold(E) = \{ v : v \leadsto u, u \in L(E) \}$.

Language-Theoretic Lemma 2:

Let $Q_1(x, y) : = x E_1 y$

$Q_2(x, y) : = x E_2 y$

be 2RPQs. Then $Q_1 \sqsubseteq Q_2$ iff $L(E_1) \subseteq fold(E_2)$.
2RPQ containment

Theorem: Let E be an RE over Λ. There is a 2NFA \tilde{A}_E such that

- $L(\tilde{A}_E) = \text{fold}(E)$
- $||\tilde{A}_E|| \in O(||E||)$

Containment $Q_1(x, y) : - x E_1 y$

$Q_2(x, y) : - x E_2 y$

TFAE

- $Q_1 \sqsubseteq Q_2$
- $L(E_1) \subseteq \text{fold}(E_2)$.
- $L(E_1) \subseteq L(\tilde{A}_E)$.
- $L(E_1) \cap L(\tilde{A}^c_E) = \emptyset$
- $L(A_{E_1} \times \tilde{A}^c_{E_2}) = \emptyset$

Bottom-line: 2RPQ containment is PSPACE-complete.
View-Based Query Processing

- **Global database**: B over Λ^+
- **Views**: $\{V_1, \ldots, V_n\}$, V_i is a query
- **View extensions**: $\{E_1, \ldots, E_n\}$, $E_i \subseteq V_i(B)$
- **Global query Q** over Λ
- **Local query** over V_1, \ldots, V_n

Query Processing

1. **View-based query answering**: approximate $Q(B)$ using view-extension information.

2. **View-based query rewriting**: approximate global query by a local query based on view definitions

3. **View-based query losslessness**: Compare global query with its view-based approximation.

4. **View-based query containment**: Compare view-based approximations of two global queries.
View-Based Query Rewriting

- **Global database**: B over Λ^+
- **Views**: $\{V_1, \ldots, V_n\}$, V_i is a query
- **View extensions**: $\{\mathcal{E}_1, \ldots, \mathcal{E}_n\}$, $\mathcal{E}_i \subseteq V_i(B)$
- **Global query** Q over Λ
- **Local query** over V_1, \ldots, V_n

Query Rewriting

$\Delta^+ = \{v_1, \ldots, v_n\}$

$\Delta = \Delta^+ \cup \Delta^-$

- Find regular expression \mathcal{E} over Δ such that $\mathcal{E}[v_i \mapsto V_i, v_i^- \mapsto \text{rev}(V_i)] \subseteq Q$.

 - $\text{rev}(v) = v^-$, $\text{rev}(v^-) = v$, $\text{rev}(e_1 + e_2) = \text{rev}(e_1) + \text{rev}(e_2)$, $\text{rev}(e_1; e_2) = \text{rev}(e_2); \text{rev}(e_1)$, $\text{rev}(e^*) = \text{rev}(e)^*$

- Find maximal such \mathcal{E}.

Example: $Q = abcd$, $V_1 = ab$, $V_2 = cd$: $Q = V_1 V_2$
Counterexample Method

Candidate Rewriting: \(w = a_1 \ldots a_k \in \Delta^k \)

- \(w \) is a *bad* rewriting if
 \(w[v_i \mapsto V_i, v_i^- \mapsto rev(V_i)] \not\subseteq Q \).

- \(w \) is a *bad* rewriting if there are witnesses \(w_1, \ldots, w_k \in \Lambda^* \) such that \(w_1 \ldots w_k \not\subseteq L(Q) \), where
 - \(w_i \in L(V_j) \) if \(a_i = v_j \).
 - \(w_i \in L(rev(V_j)) \) if \(a_i = v_j^- \).

- \(a_1w_1 \ldots a_kw_k \): *counterexample word*

Example: \(Q = abcd, V_1 = ab, V_2 = cd \)

- \(v_1v_1 \): bad rewriting, \(v_1v_2 \): good rewriting

- \(w_1 = ab, w_2 = ab \): witnesses

- \(v_1w_1v_1w_2 \): *counterexample word*
Regular Counterexamples

Counterexample Word: $a_1w_1 \ldots a_kw_k$

1. $w_i \in L(V_j)$ if $a_i = v_j$.

2. $w_i \in L(\text{rev}(V_j))$ if $a_i = v_j^{-}$.

3. $w_1 \ldots w_k \not\subseteq L(Q)$

Checking counterexample words with 2NFA:

- Check (1) and (2) with 2NFA for V_j

- Use folding technique to construct 2NFA to check $w_1 \ldots w_k \subseteq L(Q)$ and then complement.

Complexity: exponential
From Counterexamples to Rewritings

Constructing Good Rewritings

1. Construct 1NFA A_1 for counterexample words (exponential).

2. Project out witness words to get 1NFA A_2 for bad rewritings ($a_1 w_1 \ldots a_k w_k \leftrightarrow a_1 \ldots a_k$) (linear).

3. Complement A_2 to get 1NFA A_3 for good rewritings (exponential).

Theorem:

- Construction yields maximal rewriting (represented by a 1DFA).
- Doubly exponential complexity is optimal.
- Checking whether the rewriting is equivalent to Q is 2EXPSPACE-complete.
Conjunctive Queries

Conjunctive Query: Existential, conjunctive, positive first-order logic, i.e., first-order logic without \forall, \lor, \neg; written as a rule

$$Q(x_1, \ldots, x_n) : \neg R_1(x_3, y_2, x_4), \ldots, R_k(x_2, y_3)$$

Significance:

- Most common SQL queries (*Select-Project-Join*)
- Core of Datalog

Example:

$$\text{Triangle}(x, y, z) : \neg \text{Edge}(x, y), \text{Edge}(y, z), \text{Edge}(z, x)$$
Conjunctive Query Containment

Canonical Database B^Q:

- Each variable in Q is a distinct element
- Each subgoal $R(x_3, y_2, x_4)$ of Q gives rise to a tuple $R(x_3, y_2, x_4)$ in B^Q

Fact: (Chandra and Merlin, 1977)

For conjunctive queries Q_1 and Q_2, TFAE:

- The containment $Q_1 \subseteq Q_2$ holds
- There is a homomorphism $h : B^{Q_2} \rightarrow B^{Q_1}$ that is the identity on distinguished variables.
Conjunctive 2RPQ

\textbf{C2RPQ}: Core of all semistructured query languages

\[Q(x_1, \ldots, x_n) : - y_1 E_1 z_1, \ldots, y_m E_m z_m \]

- \(E_i - 2\text{RPQ} \)

\textbf{Intuition:}

- C2RPQs are obtained from CQ by replacing atoms with REs over \(\Lambda \).
- C2RPQs are Select-Project-“Regular Join” queries.

\textbf{Example:}

\[Q(x, y) : - z (Wing \cdot Part^+ \cdot Nut) x, \]
\[z (Wing \cdot Part^+ \cdot Nut) y \]
C2RPQ Containment

Difficulty: Earlier techniques do not apply

- No canonical database
- No language-theoretic lemma

Solution: Combine and extend earlier ideas

- Infinite family of canonical databases
 - Each variable in Q is a distinct element
 - Each subgoal $y_i E_i z_i$ of Q is replaced by a simple path labeled by a word in $L(E_i)$.

- Represent canonical databases as words over a larger alphabet

- Develop automata-theoretic characterization of C2RPQ containment.

Bottom-line: C2RPQ containment is EXPSPACE-complete.
In Conclusion

Regular queries:

- A rich but well-behaved fragment of Datalog
- Of special interest for semistructured data
- Beautiful application of classical formal-language theory
- Novel theory of regular paths in labeled graphs

Research Question: What is the ultimate class of regular queries?

- RPQs
- 2RPQs
- C2RPQs
- UC2RPQs
- ...