Distance-based Outliers and Robust Space Transformations

Raymond Ng
Dept. of Computer Science, UBC

(Joint work with Ed Knorr and Ruben Zamar)
Focus of Our Work

• To efficiently identify meaningful outliers in large, multidimensional datasets

• 3 main parts:
 1. Outlier *identification*
 2. Outlier *explanation*
 3. **Outlier generalization** (i.e., statistical distances vs. Euclidean distances)
Motivation of Our Work

• numerous techniques treat outliers as second-class citizens, i.e., how to get the job done in spite of the outliers
• in our work, outliers are first-class citizens as valuable discovered knowledge
• “one person’s noise is another person’s signal”
• valuable for surveillance applications and other monitoring tasks
Intuitive Notion of Outliers

- An outlier is an object which differs sufficiently from a great majority of the other objects.
- “One of these things is not like the others …” [Sesame Street, circa 1975]
DB-Outliers (Distance-Based Outliers)

• Formally:
 – Object O in dataset T is a $DB(p,D)$-outlier if at least fraction p of the objects in T are $> \text{distance } D$ from O
 – e.g., DB(0.99,5) => 99% of points are > 5 units distance away
Existing Outlier Detection Techniques

• Visual-Based (low dimensional only)
 – Boxplot (1-D), Scatterplot (2-D), Spin Plot (3-D)
 – Time-consuming, subjective

• Distribution-Based
 – Statistical discordancy tests (e.g., [BL94])
 • Requires Prior Knowledge of Distribution, # of Outliers, Types of Outliers, Mostly Univariate
 • Subject to Masking and Swamping
Existing Techniques: Depth-Based Methods

- Peeling, Depth Contours [PS88],[RR96],[JKN98]
- Regression Depth [vK99]
- Idea: *Shallow layers are more likely to contain outliers*
 - Note: median is found at deepest layer
- High complexity; only suitable for small k, the dimensionality of the space
Extreme Points as Outliers?

- What if outliers occur in middle of data rather than at extremes?
 - “extreme” points (lots!) appear on convex hull

Convex hull
Part 1: Overview of DB-outlier Identification [KN98]
Salient Features of DB-Outliers

- non-parametric
- need not be extreme points
- algorithmically, quadratic wrt k, the dimensionality
 - particularly suitable for large values of k
 - can handle many non-standard applications, e.g., video surveillance -> 2-D spatio trajectories
More About Algorithms

- an optimized cell-based algorithm
 - linear wrt the number of objects
 - suitable only for small values of k

- handle the complication when the entire data set cannot fit in main memory
 - guarantee at most 3 passes over the data
Part 2: Overview of Outlier Explanation [KN99]
Forms of Explanation

• We provide intensional knowledge of specific forms, namely, structural intensional knowledge:
 – Which sets of dimensions explain the uniqueness of the outliers?
 – How can one outlier be compared with another?
• We introduce the notions of strongest and weak outliers, and how to compute them efficiently
Suppose P is an outlier in space A_P. Then ...

1. P is a **strongest** outlier in a space A_P if no outlier exists in any subspace of A_P.

2. P is a **trivial** outlier in superspaces of A_P.

Example

```
Example

   ABCD
  /    \
 PQ   PQ
 /    \
AB   PQ
 /    \
A   B
```
3. Q is a **weak** outlier in A_P if Q is neither strongest nor trivial.

Example

$ABCD$

ABC

AB

A

B

no other outliers
Intensional Knowledge in a Lattice

Attributes are: A, B, C, D, E

A

B

C

D

E

Non-strongest spaces contain *trivial* outliers and perhaps *weak* outliers

Space has a strongest outlier

Space has no outlier
Part 3: Robust Space Transformations [KNZ01]
General Comments

• Distance-based operations assume (weighted) Euclidean k-D space … not always correct!

• Data mining applications (e.g., clustering, nearest-neighbour search, outlier detection) often neglect to deal with differing scale, variability, correlation, and outliers in datasets
 – need to “fairly” compare attributes to get meaningful results

“So, what is an appropriate space?”
Motivating Example

• Consider a dataset of 3-tuples, each containing measurements for these attributes for adolescents aged 13-19:
 1. Systolic blood pressure (in mm Hg., $\mu=120$)
 2. Body temperature (in degrees Celsius, $\mu=37$)
 3. Age ($\mu=16$)

• Are distance comparisons meaningful?
Simple “Fixes”

- Normalize the ranges (e.g., map each attribute into the range $[0,1]$)
 - But outliers can seriously skew the range!
- Use Weighted Euclidean
 - But how do we find appropriate weights?
- Standardize the ranges (e.g., map each observation x to $(x-\mu)/\sigma$)
 - better, but outliers can still dominate and skew range
- Our solution: use a robust space transformation, namely Donoho-Stahel Estimator (DSE)
Estimators, DSE Properties

• Other robust estimators:
 – Minimum Volume Ellipsoid (MVE)
 – Minimum Covariance Determinant (MCD)
 – Fast MCD (FMCD)
 – References: [RL87], [RvD99], [MZ01]

• DSE properties:
 – affine equivariance, small bias, intuitively appealing, scales relatively well
DSE: Projection Vectors

- Points are projected onto *projection vectors*
- Find out which points are outlying on the projection vector
Projecting points onto different projection vectors (dashed lines)

B is outlying, but *not* A, C

B is not outlying here
Skeleton Algorithm for the DSE Scatter Matrix

- For each projection vector selected
 - Project all N points onto it
 - Compute each point’s “outlyingness” value
 - Keep track of each point’s largest outlyingness value (across all projection vectors)

- Compute the robust covariance matrix by downweighting each point according to:
 - its largest outlyingness value
 - a weighting function

Key question (later): What is a good set of projection vectors to use?
(1) **Fixed-angle Algorithm**

- Proposed independently by Donoho and Stahel in early 1980’s
- Idea: Exhaustively try a fixed increment
- Very CPU intensive: \(O(a^{k-1} k N) \)
 - \(a \) = number of angles tested
 - e.g., 75-85 hours of CPU time in 5-D for \(N=100,000 \) tuples, using a 10-degree increment
- Yields a high quality estimator … but the following algorithms achieve a finer balance between efficiency and quality
(2) Subsampling Algorithm

- Proposed by Stahel
- Uses projection vectors orthogonal to axes of hyperellipsoid
- Also CPU intensive: $O(m k^3 + k^2 N)$
 - m is number of subsamples desired
 - e.g., for 5-D, with 95% chance of getting at least one “good” subsample, $m = 47$
(3) Pure-random Algorithm

- Randomly pick projection vectors from the unit hypersphere
- $O(rkN)$ where $r =$ # of random projections
- Can be long-running, but can also give very good results (if lucky)
 - e.g., 5-D, 100K points: 5-10 minutes of CPU time for 90% recall
(4) Hybrid-random Algorithm

- Our own algorithm
- Combines properties of Subsampling and Pure-random algorithms
- 2 phases make up the grid (set of proj. vectors):
 1. Use a small number of subsamples (e.g., $m/2$) to start the grid, plus the k eigenvectors
 2. Set a buffer zone around each grid vector and randomly generate new vectors outside of all zones (Projection vectors too close to each other yield similar results)
2-D Example

Randomly generate new projection vector in free area

\[u = \gamma a + (1 - \gamma) b \]

where \(\gamma \in [0, 1] \)

but avoid cone collisions
3-D Example of Projection Vectors, Cones, and Patches

- Randomly pick 2 existing grid vectors and create a new projection vector randomly between them (avoid colliding with existing cones)
Experimental Results
Experimental Setup

• Outlier detection application

• Datasets range in size from 1K to 200K, and 3-D to 10-D, real-life and synthetic datasets
 – Can use sampling for DSE for large datasets

• We report the median of 3 runs, for the randomized cases
Executive Summary

• Fixed-angle Algorithm (Worst Performer):
 – Can be several orders of magnitude longer than others
 – But, its exhaustive search provides a “guarantee” of quality of estimator

• Subsampling:
 – Typically fast to return an estimator of modest quality
 – May take a long time to return a higher quality estimator
Executive Summary, cont.

- Pure-random:
 - If lucky, can be very competitive with Hybrid-random
 - Otherwise, can be several orders of magnitude longer

- Hybrid-random (Best Performer):
 - Combines best features of:
 - Subsampling (for quickly building the grid, thus providing a good starting point)
 - Pure-Random (for greater speed in improving the quality)
<table>
<thead>
<tr>
<th>Algorithm</th>
<th>100,000 Tuples in 5-D</th>
<th>~1,000 Tuples in 5-D</th>
<th>~1,000 Tuples in 10-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid-Random</td>
<td>196 sec.</td>
<td>6 sec.</td>
<td>5 sec.</td>
</tr>
<tr>
<td>Subsampling</td>
<td>Hours</td>
<td>15 sec.</td>
<td>6 sec.</td>
</tr>
<tr>
<td>Pure-Random</td>
<td>423 sec.</td>
<td>140 sec.</td>
<td>710 sec.</td>
</tr>
<tr>
<td>Fixed-angle</td>
<td>Hours</td>
<td>302 sec.</td>
<td>Hours</td>
</tr>
</tbody>
</table>
Further Details

• See papers [KNZ01] for:
 – Details of algorithms, including complexity analysis
 – Comments on parameters (e.g., number of subsamples)
 – Examples of NHL outliers with and without a robust space transformation:
 • [without] - Hockey players who get a lot of penalties (e.g., Brad May, Chris Simon) may dominate other attributes
 • [with] - Players who do not necessarily have extreme values, but have unusual combinations of values (e.g., Jan Caloun, Joe Mullen)
Ongoing and Future Work

• Other datasets from non-hockey domains:
 – NASDAQ daily data
 – Mutual fund data from major Wall Street brokerage
 – Education datasets (labs, midterms, finals)

• Other improvements and optimizations
 – e.g., Analytic determination of “best” patch size, δ

• Compare our DSE results to other estimators
 (MCD, Fast MCD)
Take-Home Message

• We can efficiently identify meaningful outliers in large, multidimensional datasets.

• Outlier detection is a worthwhile data mining activity.
Cell-Based Algorithm

• Handles disk-resident data
 – Also, algorithm for memory-resident data

• Idea of cell-based approach:
 – **Quantize** tuples into cells
 – **Prune** cells that can’t be outliers

• Wherever possible, do cell-by-cell processing, rather than tuple-by-tuple!

• $O(m c^k k^{k/2} + N)$
A 2-D Cell-Structure

- Cell length \(l = \frac{D}{2 \sqrt{k}} \)
- Diagonal = \(D/2 \)
- Layer 1 is one cell thick
- Layer 2 is \(\left\lfloor 2 \sqrt{k} - 1 \right\rfloor \) cells thick
2-D Cell-Structure, cont.

• If $> M$ objects in a cell C, then *none* of those objects is an outlier.
• If $> M$ objects in $C \cup \{\text{Layer 1}\}$, then no obj. in C is an outlier.
• If $\leq M$ objects in $C \cup \{\text{Layer 1}\} \cup \{\text{Layer 2}\}$, then *all* objects in C are outliers.
$M=4$

No More Than 4 Pts. in the D-nbhd of an outlier
4 Phases of I/O in Cell-Based Algorithm

1. Read all pages (quantization)
2. Read **Class I** pages (pages containing some *white* tuples)
3. Read **Class II** pages (pages containing only *non-white* tuples, needed for tuple-by-tuple comparisons)
4. Repeat [2]
4 Phases of I/O, cont.

Key Points:
- Class I and Class II pages are mutually exclusive
- Each page is guaranteed to be read no more than 3 times
How Total Time Scales with N for 3-D Disk-Resident Datasets
Experimental Results (in seconds)

- If $k \leq 4$, use cell-based alg.; else use NL alg.

<table>
<thead>
<tr>
<th>N</th>
<th>3-D CS</th>
<th>3-D NL</th>
<th>4-D CS</th>
<th>4-D NL</th>
<th>5-D CS</th>
<th>5-D NL</th>
</tr>
</thead>
<tbody>
<tr>
<td>500,000</td>
<td>57</td>
<td>491</td>
<td>114</td>
<td>224</td>
<td>695</td>
<td>148</td>
</tr>
<tr>
<td>2,000,000</td>
<td>254</td>
<td>2332</td>
<td>607</td>
<td>1421</td>
<td>>>2147</td>
<td>1556</td>
</tr>
<tr>
<td>5,000,000</td>
<td>497</td>
<td>4811</td>
<td>1140</td>
<td>3651</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Computing Intensional Knowledge

I/O Savings Realized Due to Sharing
Strategy 1: Algorithm **UpLattice**

```
ABCDE

ABCD  ABCE  ABDE  ACDE  BCDE

ABC  ABD  ABE  ACD  ACE  ADE  BCD  BCE  BDE  CDE

AB  AC  AD  AE  BC  BD  BE  CD  CE  DE

UpLattice  A  B  C  D  E
```

(bottom-up, level-wise)
Strategy 2: JumpLattice with **DrillDown**

Start at an intermediate level and drill down *only* if outliers exist.

- ABCD
- ABCE
- ABDE
- ACDE
- BCDE
- ABC
- ABD
- ABE
- ACD
- ACE
- ADE
- BCD
- BCE
- BDE
- CDE
- AB
- AC
- AD
- AE
- BC
- BD
- BE
- CD
- CE
- DE
- A
- B
- C
- D
- E
"I’m gonna pay my electricity bill while I’m here."
Strategy 3: **Path (Grouped) Processing**

- P is a white tuple in B
 $\Rightarrow P$ is a white tuple in A

 $\therefore WT_B \subseteq WT_A$

- The set of **Class I pages** needed to process both spaces simultaneously is given by:

 \[PgI(WT_A \cup WT_B) = PgI(WT_A) \]

 \cup

 \[PgII(WT_B, B) \]

 \cup

 \[PgII(WT_A - WT_B, A) \]
Strategy 4: Semi-Lattice (Grouped) Processing

- Combined set of Class I pages: $PgI(WT_{ABC})$
- ... of Class II pages:

 $PgII(WT_A, A) \cup \ldots \cup $
 $PgII(WT_C, C) \cup $
 $PgII(WT_{AB} - WT_A - WT_B, AB) \cup \ldots \cup $
 $PgII(WT_{ABC} - WT_{AB} - \ldots - WT_A - \ldots), ABC)$

Example:

Space ABC is top-element for attributes A, B, & C
Summary of I/O Sharing (Path and Semi-Lattice)

- Have similar performance for most scenarios
- Usually better than UpLattice or DrillDown
- Both benefit from shared processing when finding top-u non-trivial outliers
 - 65-75% savings in I/O than if each space is handled separately (i.e., no sharing)
- Overkill if no outliers exist (esp. Semi-Lattice, which needs more memory than Path)
Robust Statistics

- *Robust* algorithms are able to *accommodate* (i.e., minimize the impact of) outliers
- Outliers can radically affect distance-based operations
 - Consider mean μ vs. median M:
 - single outlier can greatly affect μ
 - single outlier is unlikely to change M by much
Outliers and D-Neighbourhoods

- Is the notion of a D-neighbourhood meaningful if the attributes have different scale, variability, and correlation?
Statistical Distances

• In the presence of variability, differing scales, and correlation, all δ-neighbours lie within an ellipse (hyperellipsoid)
 – Correlation \Rightarrow ellipse is rotated by θ
• Figure: a is further from P than b is
Quantifying Location and Scatter

- We seek robust estimates of *location* (center of cloud of points) and *scatter* (variability)
- In 1-D, μ and σ^2 are scalars; in k-D, this extends to:
 - μ: a vector of k scalars
 - Σ: a symmetric $k \times k$ matrix of covariances, where:
 - entry ij is the *covariance* of attributes Y_i and Y_j
- Covariance of two random variables is a measure of their joint variability (or degree of association)
Introduction to Donoho-Stahel Estimator (DSE)
DSE Properties
Key Properties for Distance-based Operations

1. Euclidean property
 - Can use Euclidean distances after transformation
 - Results in overall efficiency (e.g., [KN98])

2. Stability property
 - Particularly important for database operations because of frequent updates
 - Addition and/or deletion of n_0 points does not affect DSE much
Precision and Recall

• Use *precision* and *recall* [S83] to evaluate quality of results
 – Let $A =$ answer set (outliers returned by a test)
 – Let $B =$ target set of “actual” outliers given by a suitably fine Fixed-angle interval
• Define:
 1. *Precision* $= \%$ of outliers in A that are in B
 2. *Recall* $= \%$ of outliers in B that are in A
DSE Algorithms:
Selection of Projection Vectors
Conclusions
Conclusions: Identifying DB-Outliers

- We gave 2 kinds of algorithms for identifying distance-based outliers in large, disk-resident datasets:
 - **Cell-based**: $O(m c^k k^{k/2} + N)$, best for $k \leq 4$
 - **Nested-loop**: $O(k N^2)$, best for $k \geq 5$
Conclusions: Computing Intensional Knowledge

• We provided a notion of strength: strongest, weak, and trivial outliers
• We presented 4 strategies for finding non-trivial outliers:
 – UpLattice
 – JumpLattice with DrillDown
 – JumpLattice with Path
 – JumpLattice with Semi-Lattice
• Path is our recommended strategy
• Recommend entry level $k=3$
Conclusions:
Robust Space Transformations

• Must account for scale, variability, correlation, and outliers in many data mining applications
 – Use robust statistics to improve quality and meaningfulness of results

• We recommend DSE; it possesses:
 – Euclidean property
 – Stability property
Conclusions: DSE

• Use Hybrid-random with 400-1000 patches, depending on level of recall desired
 – Suggested Default: $\delta = 0.1581$; patches = 1000

• Hybrid-Random can provide excellent DSE:
 – in 1-3 minutes for 100,000 tuples in 5-D
 – in 5 seconds for 855 tuples in 10-D