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Focus of Our Work

• To efficiently identify meaningful outliers in 
large, multidimensional datasets

• 3 main parts:
1. Outlier identification
2. Outlier explanation
3. ** Outlier generalization (i.e., statistical 

distances vs. Euclidean distances)



Motivation of Our Work

• numerous techniques treat outliers as second-
class citizens, i.e., how to get the job done in 
spite of  the outliers

• in our work, outliers are first-class citizens as 
valuable discovered knowledge

• “one person’s noise is another person’s signal”
• valuable for surveillance applications and other 

monitoring tasks



Intuitive Notion of Outliers

• An outlier is an object 
which differs 
sufficiently from a 
great majority of the 
other objects

• “One of these things is 
not like the others …”
[Sesame Street, circa 
1975]
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DB-Outliers
(Distance-Based Outliers)

• Formally:
– Object O in dataset 

T is a DB(p,D)-
outlier if at least 
fraction p of the 
objects in T are > 
distance D from O

– e.g., DB(0.99,5) => 
99% of points are > 5 
units distance away
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Existing Outlier Detection 
Techniques

• Visual-Based (low dimensional only)
– Boxplot (1-D), Scatterplot (2-D), Spin Plot (3-D)
– Time-consuming, subjective

• Distribution-Based
– Statistical discordancy tests (e.g., [BL94])

• Requires Prior Knowledge of Distribution, # of 
Outliers, Types of Outliers, Mostly Univariate

• Subject to Masking and Swamping



Existing Techniques: 
Depth-Based Methods

• Peeling, Depth Contours [PS88],[RR96], 
[JKN98]

• Regression Depth [vK99]
• Idea:  Shallow layers are more likely to 

contain outliers
– Note: median is found at deepest layer

• High complexity; only suitable for small k, 
the dimensionality of the space



Extreme Points as Outliers?

• What if outliers occur in middle of data 
rather than at extremes?

• “extreme” points (lots!) appear on convex hull
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Part 1: Overview of DB-outlier 
Identification [KN98]



Salient Features of DB-Outliers

• non-parametric
• need not be extreme points
• algorithmically,  quadratic wrt k, the 

dimensionality 
– particularly suitable for large values of k
– can handle many non-standard applications, e.g., 

video survelliance -> 2-D spatio trajectories



More About Algorithms

• an optimized cell-based algorithm
– linear wrt the number of objects
– suitable only for small values of k

• handle the complication when the entire 
data set cannot fit in main memory
– guarantee at most 3 passes over the data



Part 2: Overview of Outlier 
Explanation [KN99]



Forms of Explanation

• We provide intensional knowledge of 
specific forms, namely, structural intensional 
knowledge:
– Which sets of dimensions explain the uniqueness 

of the outliers?
– How can one outlier be compared with another?

• We introduce the notions of strongest and 
weak outliers, and how to compute them 
efficiently



Strongest Outliers

Suppose P is an outlier 
in space AP.  Then ...

1. P is a strongest
outlier in a space AP
if no outlier exists in 
any subspace of AP

2. P is a trivial outlier in 
superspaces of AP
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Weak Outliers

3. Q is a weak outlier in 
AP if Q is neither 
strongest nor trivial

PQ

P

PQ

Example

A B

AB
no 
other
outliers

ABC

ABCD



Intensional Knowledge in a Lattice
ABCDE

ABCD     ABCE     ABDE      ACDE      BCDE

ABC  ABD  ABE  ACD  ACE  ADE  BCD  BCE  BDE CDE

AB   AC   AD  AE   BC   BD   BE   CD   CE   DE

A         B         C         D         E

BC BE CE

A B C D E
Lemieux Brind’Amour

Jagr Lemieux
Jagr

LemieuxLeclair Jagr

Space has a strongest outlier Space has no outlier

Non-strongest
spaces contain
trivial outliers
and perhaps
weak outliers

Attributes are:
A,B,C,D,E



Part 3: Robust Space 
Transformations [KNZ01]



General Comments

• Distance-based operations assume  (weighted) 
Euclidean k-D space … not always correct!

• Data mining applications (e.g., clustering, nearest-
neighbour search, outlier detection) often neglect 
to deal with differing scale, variability, 
correlation, and outliers in datasets
– need to “fairly” compare attributes to get meaningful 

results

“So, what is an appropriate space?”



Motivating Example

• Consider a dataset of 3-tuples, each 
containing measurements for these 
attributes for adolescents aged 13-19:

1. Systolic blood pressure (in mm Hg., µ=120)
2. Body temperature (in degrees Celsius, µ=37)
3. Age (µ=16)

• Are distance comparisons meaningful?



Simple “Fixes”
• Normalize the ranges (e.g., map each attribute into 

the range [0,1])
– But outliers can seriously skew the range!

• Use Weighted Euclidean
– But how do we find appropriate weights?

• Standardize the ranges (e.g., map each observation 
x to (x-µ)/σ )
– better, but outliers can still dominate and skew range

• Our solution:  use a robust space transformation, 
namely Donoho-Stahel Estimator (DSE)



Estimators, DSE Properties

• Other robust estimators:
– Minimum Volume Ellipsoid (MVE)
– Minimum Covariance Determinant (MCD)
– Fast MCD (FMCD)
– References: [RL87], [RvD99], [MZ01]

• DSE properties:
– affine equivariance, small bias, intuitively 

appealing, scales relatively well



DSE: Projection Vectors

• Points are projected 
onto projection 
vectors

• Find out which 
points are outlying 
on the projection 
vector



Projecting points onto different  
projection vectors (dashed lines)

B is outlying, but not A, C B is not outlying here



Skeleton Algorithm for the DSE 
Scatter Matrix

• For each projection vector selected
– Project all N points onto it
– Compute each point’s “outlyingness” value
– Keep track of each point’s largest outlyingness value 

(across all projection vectors)
• Compute the robust covariance matrix by 

downweighting each point according to:
– its largest outlyingness value
– a weighting function

Key question (later): What is a good set of projection vectors 
to use?



(1) Fixed-angle Algorithm

• Proposed independently by Donoho and Stahel in 
early 1980’s

• Idea: Exhaustively try a fixed increment
• Very CPU intensive:  O(a k-1 k N)

– a = number of angles tested
– e.g., 75-85 hours of CPU time in 5-D for N=100,000 

tuples, using a 10-degree increment
• Yields a high quality estimator … but the 

following algorithms achieve a finer balance 
between efficiency and quality



(2) Subsampling Algorithm

• Proposed by Stahel
• Uses projection vectors orthogonal to axes 

of hyperellipsoid
• Also CPU intensive: O(m k3 + k2 N)

– m is number of subsamples desired
– e.g., for 5-D, with 95% chance of getting at 

least one “good” subsample, m = 47



(3) Pure-random Algorithm

• Randomly pick projection vectors from the 
unit hypersphere

• O(r k N) where r = # of random projections
• Can be long-running, but can also give very 

good results (if lucky)
– e.g., 5-D, 100K points: 5-10 minutes of CPU 

time for 90% recall



(4) Hybrid-random Algorithm

• Our own algorithm
• Combines properties of Subsampling and Pure-

random algorithms
• 2 phases make up the grid (set of proj. vectors):

1. Use a small number of subsamples (e.g., m/2) to start 
the grid, plus the k eigenvectors

2. Set a buffer zone around each grid vector and 
randomly generate new vectors outside of all zones
(Projection vectors too close to each other yield similar results)



bδ

δ

Free
Area

a

Randomly generate new
projection vector in free area

2-D Example

u = γ a + (1- γ) b
where γ ∈[0, 1]

but avoid cone collisions



3-D Example of Projection 
Vectors, Cones, and Patches

• Randomly pick 2 existing grid vectors and 
create a new projection vector randomly 
between them (avoid colliding with existing 
cones)

δ

projection vector

cone patch of
radius δ



Experimental Results



Experimental Setup

• Outlier detection application
• Datasets range in size from 1K to 200K,  

and 3-D to 10-D, real-life and synthetic 
datasets
– Can use sampling for DSE for large datasets

• We report the median of 3 runs, for the 
randomized cases



Executive Summary

• Fixed-angle Algorithm (Worst Performer):
– Can be several orders of magnitude longer than others
– But, its exhaustive search provides a “guarantee” of 

quality of estimator

• Subsampling:
– Typically fast to return an estimator of modest quality
– May take a long time to return a higher quality 

estimator



Executive Summary, cont.

• Pure-random:
– If lucky, can be very competitive with Hybrid-random
– Otherwise, can be several orders of magnitude longer

• Hybrid-random (Best Performer):
– Combines best features of:

• Subsampling (for quickly building the grid, thus 
providing a good starting point)

• Pure-Random (for greater speed in improving the 
quality)



CPU Time for Similar, High 
Precision and Recall (e.g., 95%)

Hours302 sec.HoursFixed-angle
710 sec.140 sec.423 sec.Pure-Random

6 sec.15 sec.HoursSubsampling
5 sec.6 sec.196 sec.Hybrid-Random 

~1,000
Tuples
in 10-D

~1,000
Tuples
in 5-D

100,000
Tuples
in 5-D

Algorithm



Further Details

• See papers [KNZ01] for:
– Details of algorithms, including complexity analysis
– Comments on parameters (e.g., number of subsamples)
– Examples of NHL outliers with and without a robust 

space transformation:
• [without] - Hockey players who get a lot of  

penalties (e.g., Brad May, Chris Simon) may 
dominate other attributes

• [with] - Players who do not necessarily have 
extreme values, but have unusual combinations of 
values (e.g., Jan Caloun, Joe Mullen)



Ongoing and Future Work

• Other datasets from non-hockey domains:
– NASDAQ daily data
– Mutual fund data from major Wall Street brokerage
– Education datasets (labs, midterms, finals)

• Other improvements and optimizations
– e.g., Analytic determination of “best” patch size, δ

• Compare our DSE results to other estimators 
(MCD, Fast MCD)



Take-Home Message

• We can efficiently identify meaningful 
outliers in large, multidimensional datasets.

• Outlier detection is a worthwhile data 
mining activity.



Cell-Based Algorithm

• Handles disk-resident data
– Also, algorithm for memory-resident data

• Idea of cell-based approach:
– Quantize tuples into cells 
– Prune cells that can’t be outliers

• Wherever possible, do cell-by-cell 
processing, rather than tuple-by-tuple!

• O(m ck kk/2 + N)



A 2-D Cell-Structure

• Cell length l =
D / (2 √ k)

• Diagonal = D/2
• Layer 1 is 

one cell thick
• Layer 2 is 

2 √ k   - 1
cells thick

x



2-D Cell-Structure, cont.

• If > M objects in a cell 
C, then none of those 
objects is an outlier

• If > M objects in C ∪
{Layer 1}, then no 
obj. in C is an outlier

• If ≤ M objects in C ∪
{Layer 1}∪{Layer 2}, 
then all objects in C
are outliers

x



M=4

No
More
Than
4 Pts.
in the 
D-
nbhd
of an
outlier



4 Phases of I/O 
in Cell-Based Algorithm

1. Read all pages (quantization)
2. Read Class I pages (pages containing 

some white tuples)
3. Read Class II pages (pages containing 

only non-white tuples, needed for tuple-
by-tuple comparisons)

4. Repeat [2]



4 Phases of I/O, cont.

Key Points:
• Class I and Class II pages are mutually    

exclusive
• Each page is guaranteed to be read no more 

than 3 times



How Total Time Scales with N for 
3-D Disk-Resident Datasets



Experimental Results 
(in seconds)

• If k ≤ 4, use cell-based alg.; else use NL alg.

1556>>2147142160723322542,000,000

3651114048114975,000,000

14869522411449157500,000

5-D
NL

5-D 
CS

4-D
NL

4-D
CS

3-D
NL

3-D
CSN



Computing Intensional 
Knowledge

I/O Savings Realized Due to Sharing



Strategy 1:  Algorithm UpLattice
ABCDE

ABCD     ABCE     ABDE      ACDE      BCDE

ABC  ABD  ABE  ACD  ACE  ADE  BCD  BCE  BDE CDE

AB    AC  AD  AE   BC   BD  BE   CD   CE   DE

B C D EAUpLattice
(bottom-up, level-wise)



Strategy 2:  JumpLattice with DrillDown
ABCDE

ABCD     ABCE     ABDE      ACDE      BCDE

ABC  ABD  ABE  ACD  ACE  ADE  BCD  BCE  BDE CDE

AB AD DE

B C D E

AE BC BD BE CD CE

Start at an intermediate
level and drill down 
only if outliers exist

A

AC





Strategy 3:  Path
(Grouped) Processing

• P is a white tuple in B
⇒ P is a white tuple in 
A 

∴ WTB ⊆ WTA
• The set of Class I pages

needed to process both 
spaces simultaneously is 
given by:

PgI(WTA ∪ WTB) =
PgI(WTA)

A

B

… and the combined 
set of Class II pages:
PgII(WTA - WTB , A) 

∪
PgII(WTB , B)



Strategy 4:  Semi-Lattice
(Grouped) Processing

• Combined set of Class I 
pages:  PgI(WTABC)

• ... of Class II pages:
PgII(WTA, A) ∪ … ∪
PgII(WTC, C) ∪
PgII(WTAB - WTA -
WTB, AB) ∪ … ∪
PgII(WTABC - WTAB -
… - WTA - …), ABC)

ABC

AB

A

Example:
Space ABC is top-element 

for attributes A, B, & C

AC BC

B C



Summary of I/O Sharing
(Path and Semi-Lattice)

• Have similar performance for most scenarios
• Usually better than UpLattice or DrillDown
• Both benefit from shared processing when finding 

top-u non-trivial outliers
– 65-75% savings in I/O than if each space is 

handled separately (i.e., no sharing)
• Overkill if no outliers exist (esp. Semi-Lattice, 

which needs more memory than Path)



Robust Statistics

• Robust algorithms are able to accommodate
(i.e., minimize the impact of) outliers

• Outliers can radically affect distance-based 
operations 
– Consider mean µ vs. median M:

• single outlier can greatly affect µ
• single outlier is unlikely to change M by 

much



Outliers and D-Neighbourhoods
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• Is the notion of a      

D-neighbourhood 
meaningful if the 
attributes have 
different scale, 
variability, and 
correlation?



Statistical Distances

• In the presence of variability, differing 
scales, and correlation, all δ-neighbours lie 
within an ellipse (hyperellipsoid)
– Correlation => ellipse is rotated by θ

• Figure:  a is further from
P than b is

θP.b

.a

.
.



Quantifying Location and Scatter

• We seek robust estimates of location (center of 
cloud of points) and scatter (variability)

• In 1-D, µ and σ2 are scalars; in k-D, this extends to:
– µ: a vector of k scalars

– Σ: a symmetric k x k matrix of covariances, where:

• entry ij is the covariance of attributes Yi and Yj

• Covariance of two random variables is a measure 
of their joint variability (or degree of association)



Introduction to Donoho-Stahel
Estimator (DSE)



DSE Properties



Key Properties for 
Distance-based Operations

1. Euclidean property
• Can use Euclidean distances after 

transformation
• Results in overall efficiency (e.g., [KN98])

2. Stability property
– Particularly important for database operations 

because of frequent updates
• Addition and/or deletion of n0 points does not 

affect DSE much



Precision and Recall

• Use precision and recall [S83] to evaluate 
quality of results

– Let A= answer set (outliers returned by a test)
– Let B= target set of “actual” outliers given by 

a suitably fine Fixed-angle interval
• Define:

(1) Precision = % of outliers in A that are in B
(2) Recall = % of outliers in B that are in A



DSE Algorithms:
Selection of Projection Vectors



Conclusions



Conclusions:
Identifying DB-Outliers

• We gave 2 kinds of algorithms for 
identifying distance-based outliers in large, 
disk-resident datasets:
– Cell-based:  O(m ck kk/2 + N), best for k ≤ 4
– Nested-loop:  O(k N2), best for k ≥ 5



Conclusions: 
Computing Intensional Knowledge

• We provided a notion of strength: strongest, weak, 
and trivial outliers

• We presented 4 strategies for finding non-trivial
outliers:
– UpLattice
– JumpLattice with DrillDown
– JumpLattice with Path
– JumpLattice with Semi-Lattice

• Path is our recommended strategy
• Recommend entry level k=3



Conclusions:
Robust Space Transformations

• Must account for scale, variability, 
correlation, and outliers in many data 
mining applications
– Use robust statistics to improve quality and 

meaningfulness of results
• We recommend DSE;  it possesses:

– Euclidean property
– Stability property



Conclusions: DSE

• Use Hybrid-random with 400-1000 patches, 
depending on level of recall desired
– Suggested Default: δ = 0.1581; patches = 1000

• Hybrid-Random can provide excellent DSE:
– in 1-3 minutes for 100,000 tuples in 5-D
– in 5 seconds for 855 tuples in 10-D


