On Data Management for Pervasive Computing Environments

Yelena Yesha Anupam Joshi Timothy Finin and Filip Perich AN HONORS UNIVERSITY IN MARYLAND

http://www.umbc.edu http://research.ebiquity.org

1. Introduction to pervasive environments

2. Motivation

3. Data management challenges

4. Design and Implementation

5. Conclusions and future work

Yelena Yesha

9/27/2002

1. introduction - the brave new world

Devices increasingly more

{powerful ^ smaller ^ cheaper}

- People interact daily with dozens of computing devices (many of them mobile):
 - Cars
 - Desktops/Laptops
 - Cell phones
 - PDAs
 - MP3 players
 - Transportation passes

→ Computing is becoming pervasive

Yelena Yesha

9/27/2002

the brave new world

Many standalone devices, no interaction, no collaboration

Yelena Yesha

9/27/2002

traditional mobile computing

- Mobile devices = traditionally standalone
 - All required information present locally
 - Synchronization through "cable" connection
- Wireless connectivity = new way for data exchange
 - Cellular networks, satellites, LANs and short range networks
- Mobile devices now able to connect to the Internet
 - Client end-points in client/proxy/server model
 - Initiate actions
 - Receive information from servers

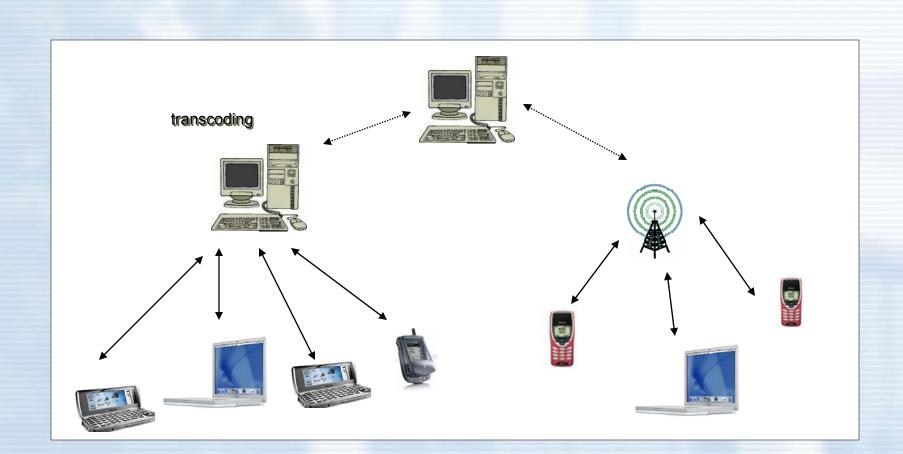
→ Mobile devices have wireless connectivity

Yelena Yesha

9/27/2002

before client/proxy/server model

→ Mobile devices treated as (dumb) clients in client/proxy/server information management models



Yelena Yesha

9/27/2002

client/proxy/server model

→ Mobile devices treated as (dumb) clients in client/proxy/server information management models

Yelena Yesha

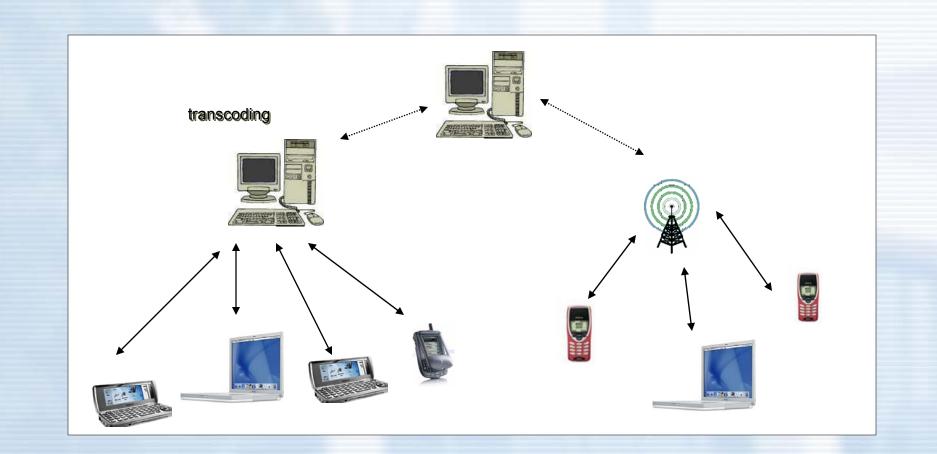
9/27/2002

ad-hoc networking technologies

- Ad-hoc networking technologies (e.g. Bluetooth)
 - Main characteristics:
 - Short range
 - Spontaneous connectivity
 - Free, at least for now
- Mobile devices
 - Aware of their neighborhood
 - Can discover others in their vicinity
 - Interact with peers in their neighborhood
 - inter-operate and cooperate as needed and as desired
 - Both information consumers and providers

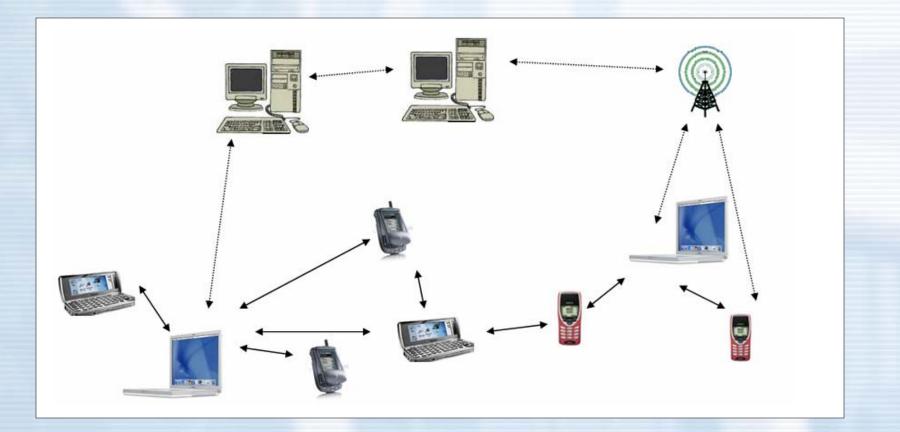
→ Ad-hoc mobile technology challenges the traditional client/server information access model

Yelena Yesha


9/27/2002

before peer-to-peer model

→ Peer-to-Peer Approach to Information Management


The labor

Yelena Yesha

9/27/2002

peer-to-peer model

→ Peer-to-Peer Approach to Information Management

Yelena Yesha

9/27/2002

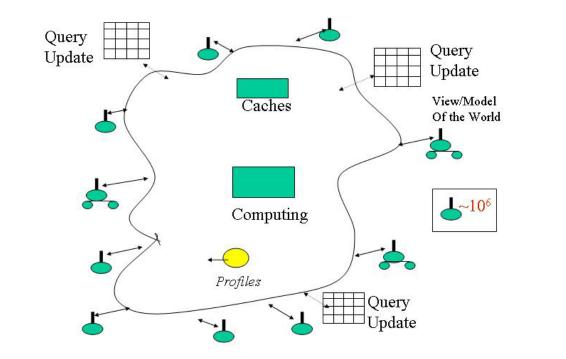
pervasive environment paradigm

- Pervasive Computing Environment
 - 1. Ad-Hoc mobile connectivity
 - Spontaneous interaction

- Service/Information consumers and providers
- Autonomous, adaptive, and proactive
- 3. "Data intensive" "deeply networked" environment
 - Everyone can exchange information
 - Data-centric model
 - Some sources generate "streams" of data, e.g. sensors

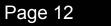
→ Pervasive Computing Environments

.....


Yelena Yesha

9/27/2002

the big picture (NSF IDMPI01)



- static and moving sensors
- database clouds with caching and computing functionality
- profiles and context knowledge

\rightarrow Hot topic

9/27/2002

2. motivation – street scenario

Cars, street signs, tranic lights and road-side pusitiesses can exchange latest location-dependent information

Yelena Yesha

9/27/2002

motivation – conference scenario

 Smart-room intrastructure and personal devices can assist an ongoing meeting: data exchange, schedulers, etc.

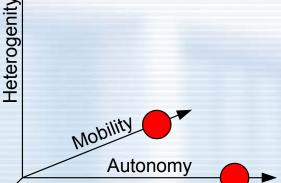
Yelena Yesha

9/27/2002

imperfect world

- In a *perfect* world
 - everything available and done automatically
- In the real world
 - Limited resources
 - Battery, memory, computation, connection, bandwidth
 - Must live with less than perfect results
 - Dumb devices
 - → Must explicitly be told What, When, and How
 - "Foreign" entities and unknown peers
- So, we really want

Smart, autonomous, dynamic, adaptive, and proactive methods to handle data and services...


Yelena Yesha

9/27/2002

3. what is pervasive environment?

- A "type" of mobile distributed database / distributed file system
 - 4 orthogonal axes (Dunham and Helal, 1995)
- Challenges inherited from (common with) client/proxy/server models in wireless networks
 - Distributed data, low bandwidth and frequent disconnection
 - Query processing and optimization
 - location transparency and awareness
 - Caching
 - Replication
 - Name resolution
 - Transaction management

Yelena Yesha

9/27/2002

Distribution

challenges - is that all? (1)

1. Spatio-temporal variation of data and data sources

- All devices in the neighborhood are potential information providers
- Nothing is fixed
- No global catalog
- No global routing table
- No centralized control

- However, each entity can interact with its neighbors
 - By advertising / registering its service
 - By collecting / registering services of others

Yelena Yesha

9/27/2002

challenges - is that all? (2)

- Query may be explicit or implicit, but is often known up-front
 - Users sometimes ask explicitly
 - e.g. tell me the nearest restaurant that has vegetarian menu items
 - The system can "guess" likely queries based on
 declarative information or past behavior
 - e.g. the user always wants to know the price of IBM stock

Yelena Yesha

9/27/2002

challenges - is that all? (3)

- 3. Since information sources are not known a priori, schema translations cannot be done beforehand
 - Resource limited devices
 - \rightarrow so hope for common, domain specific ontologies \odot
 - Different modes:
 - Device could interact with only such providers whose schemas it understands
 - Device could interact with anyone, and cache the information in hopes of a translation in the future.
 - Device could always try to translate itself
 - Prior work in Schema Translation, Ongoing work in Ontology Mapping.

Yelena Yesha

9/27/2002

challenges - is that all? (4)

- - Device has reliable information, but makes it inaccessible
 - Devices provides information, which is unreliable
 - Once device shares information, it needs the capability to protect future propagation and changes to that information

Yelena Yesha

9/27/2002

challenges - is that all? (5)

- Need to avoid humans in the loop
 - Devices must dynamically "predict" data importance and utility based on the current context
- The key insight: declarative (or inferred) descriptions help
 - Information needs
 - Information capability
 - Constraints
 - Resources
 - Data
 - Answer fidelity

Expressive Profiles can capture such descriptions

Yelena Yesha

9/27/2002

challenges - is that all (6)

Use of profiles

- Ingent

- Cherniak et al, 2002
 - Profiles = data domains + fixed utility values
 - Not specifically targeted to pervasive environments, but very applicable to them

PROFILE Traveler

DOMAIN

- R = www.hertz.com
- S = +shuttle +logan +downtown
- D = +directions +logan +boston +downtown

UTILITY

U (S) = UPTO (1,2,0)

U (R [#D > 0]) = 5

UMBC AN HONORS UNIVERSITY IN MARYLAND

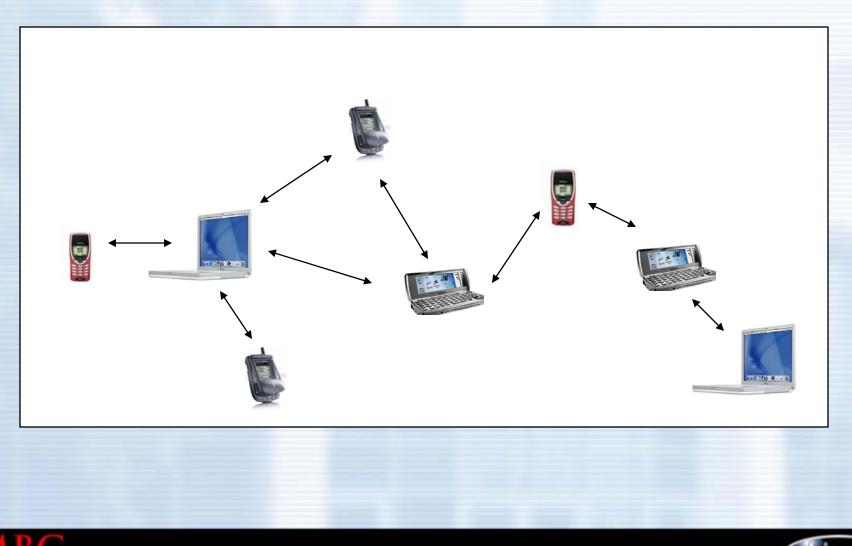
Yelena Yesha

9/27/2002

4. our data management architecture

MoGATU

- Design and implementation consists of
 - Data
 - Metadata
 - Profiles
 - Entities
 - Communication interfaces
 - Information Providers
 - Information Consumers
 - Information Managers

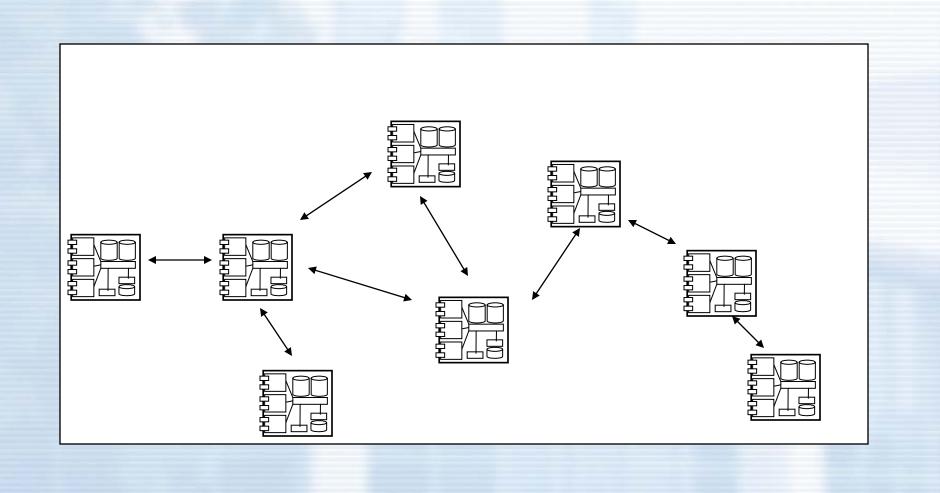


Yelena Yesha

9/27/2002

02

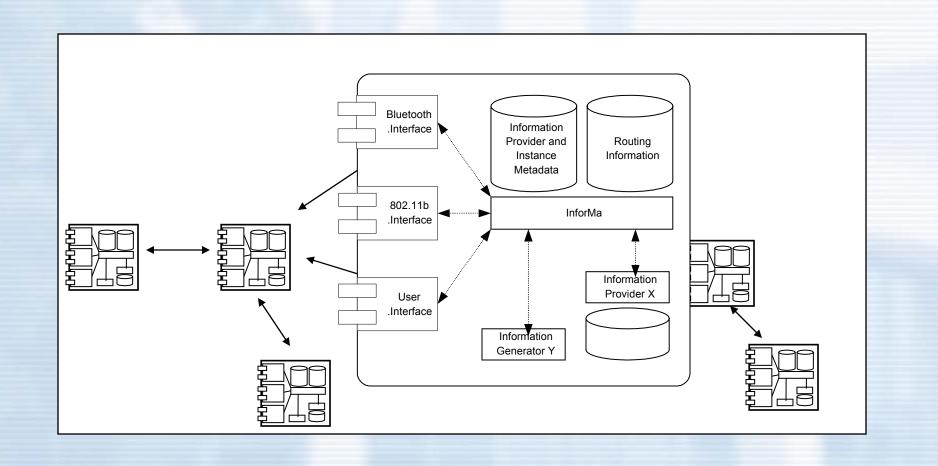
MoGATU P2P model representation


AN HONORS UNIVERSITY IN MARYLAND

Yelena Yesha

9/27/2002

MoGATU P2P model representation



Yelena Yesha

9/27/2002

MoGATU P2P model representation

Yelena Yesha

9/27/2002

MoGATU – metadata

- Metadata representation
 - To provide information about
 - Information providers and consumers,
 - Data objects, and
 - Queries and answers
 - To describe relationships
 - To describe restrictions
 - To reason over the information
 - Semantic language
 DAML+OIL / DAML-S

http://mogatu.umbc.edu/ont/

Yelena Yesha

9/27/2002

MoGATU – profile

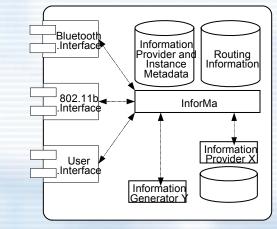
- Profile
 - User preferences, schedule, requirements
 - Device constraints, providers, consumers
 - Data ownership, restriction, requirements, process model
- Profiles based on BDI models
 - Beliefs are "facts"
 - about user or environment/context
 - Desires and Intentions
 - higher level expressions of beliefs and goals
- Devices "reason" over the BDI profiles
 - Generate domains of interest and utility functions
 - Change domains and utility functions based on context

Yelena Yesha

9/27/2002

MoGATU – entities

- Communication Interface
 - Network abstraction
 - Routing / Discovery not concerned with underlying network
 - Registers and interacts with local Information Manager (InforMa)
 - InforMa still aware of the network attributes
- Information Provider
 - Subset of a world knowledge
 - Registers and interacts with local InforMa
- Information Consumer
 - Access to information through local InforMa
 - Registers and interacts with local InforMa


Yelena Yesha

9/27/2002

MoGATU – information manager (1)

- One Information Manager (InforMa) per device
 - Various types based on device strength and will
- Indexing / Discovery
 - Through advertisements and solicitations
 - Relying on local cache
 - No fixed schema or ontology
- Advertisement
 - Implicit discovery
 - Advertise local (and even remote) providers / answers
 - Local providers *must* register with local InforMa
- Solicitation
 - Explicit discovery
 - Asks for remote providers / answers

Yelena Yesha

9/27/2002

MoGATU – information manager (2)

Routing

- Data-based table routing
- Promiscuous mode
 - Uses cached advertisement information
 - Matching using CLIPS

```
informa_route_query(f, t, query) {
    if (local(t))
    if (answer = cached_answer(query) && valid(answer)) return answer
    if (answer = contact_local_info_provider(f, t, query)) return answer
    else error(no_answer)

if (intercept_foreign_queries)
    if (answer = cached_answer(query) && valid(answer)) return answer;

if (willing_to_forward)
    if (nexthop = lookup(t)) return forward_to(nexthop)
    else
        if (local(o)) forward_to_random(o, d, query)
        else error(no_destination)
    else error(no_answer)
}
```


Yelena Yesha

9/27/2002

MoGATU – information manager (3)

- Caching
 - Caches incoming data messages
 - DAML+OIL encoded information in profiles and data objects
 - Hits based on reasoning over associated metadata
 - Using CLIPS for reasoning
 - Replacement policies
 - Traditional LRU and MRU
 - Traditional LRU and MRU + profile-based space pre-allocation
 - Semantic-based
 - Space pre-allocation based on context and profile knowledge
 - Dynamic utility values for each cache entry based on context and profile
 - Using CLIPS

Yelena Yesha

9/27/2002

MoGATU – implementation

Implemented

- Communication interface for Bluetooth and Ad-hoc 802.11
- Providers for gas, weather, traffic information, etc.
- Consumers representing cars and PDAs
- InforMa with preliminary support for
 - Query routing
 - Query processing
 - Semantics-based data caching
 - Limited notion of user profiles
 - Simple pro-active profile-initiated interaction

Yelena Yesha

9/27/2002

MoGATU – experiments

- Conducted experiments to evaluate
 - 1. How context and profile knowledge affect cache preallocation
 - 2. Performance of the semantic-based cache replacement algorithm against LRU and MRU approaches
 - 3. Networking aspect of the framework
 - Transmission time
 - Routing

Yelena Yesha

9/27/2002

MoGATU – simulation settings

- One day activity of a person
 - Starts at 8AM in Annapolis
 - Travels to Washington D.C. for 10AM meeting
 - Lunch at noon
 - Travels to UMBC for 2PM meeting
 - Shopping from 4:30PM until 5:30PM
 - Dinner at 8PM in Annapolis
- Her PDA has some profile knowledge
 - Limited information about the schedule
 - Plus other information about preferences and requirements

Yelena Yesha

9/27/2002

MoGATU – simulation settings

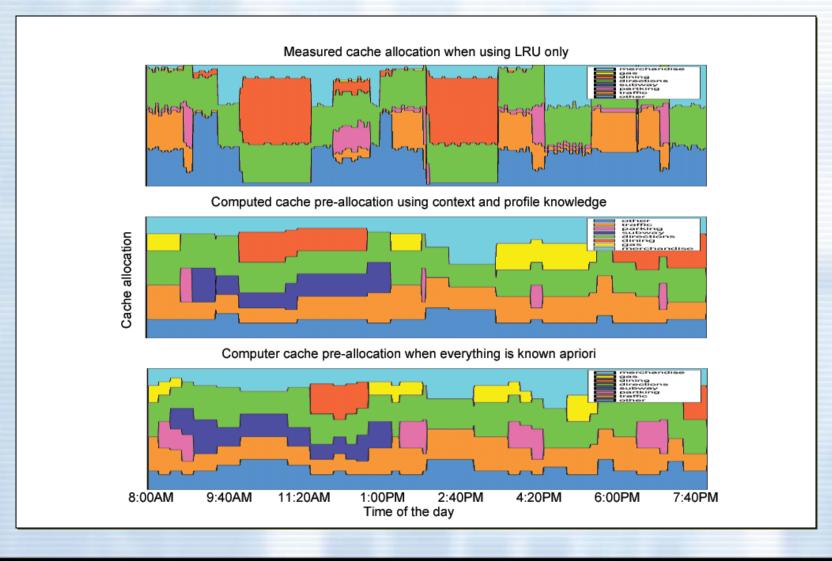
- Information sources
 - Represent cars, street lights, buildings, subway and people
 - At every time instance some sources may be available
- Available information
 - Different type (8)
 - Directions, traffic, gas, parking, merchandise, dining, subway, and anything else
 - Different utility value
 - Dynamically computed by each Information Manager based on context and profile knowledge

Yelena Yesha

9/27/2002

Ex1: cache allocation

- 1. How does profile-based pre-allocation compare to measured LRU cache allocation?
 - a) Recorded cache content at every minute of the 12-hour simulation period while using traditional LRU for cache replacement
 - b) Computed how context and profile knowledge affects cache preallocation
 - c) Computed how a prior omniscient knowledge would affect cache pre-allocation
- Without using the additional knowledge, some important data were not cached
 - LRU did not cache any subway data
 - LRU kept on caching restaurant data after the lunch was over



Yelena Yesha

9/27/2002

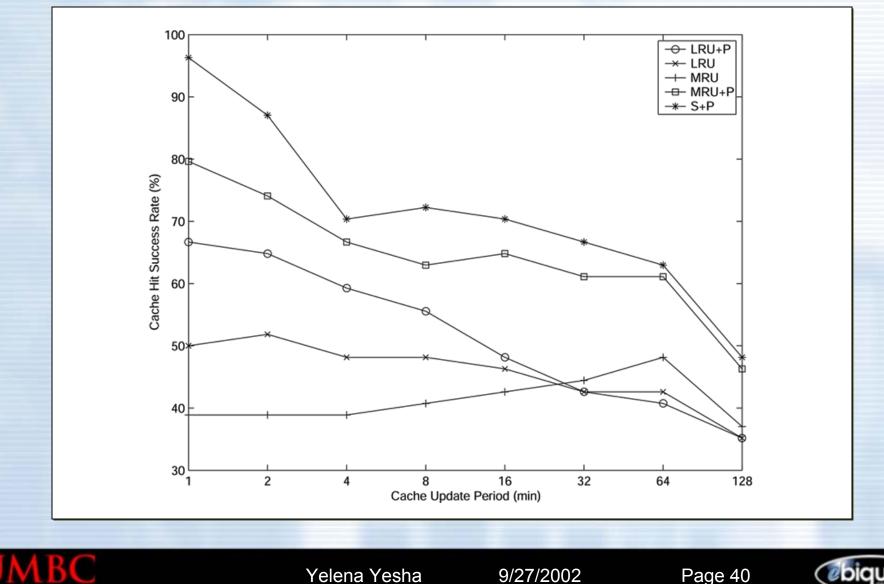
Ex1: cache allocation

Yelena Yesha

9/27/2002

Ex2: single queries with varying update

- How does each cache replacement algorithm perform given varying update periods and single queries only?
 - Update period from 1 to 128 minutes
 - Device's preferred refresh rate to prolong battery life
 - A rate at which information providers appear/disappear
 - Most data has 10-minute lifetime
 - Person asks 1 to 4 unique queries during each activity
 - While driving, one query about traffic, one for a gas station, etc.
 - 54 queries total



Yelena Yesha

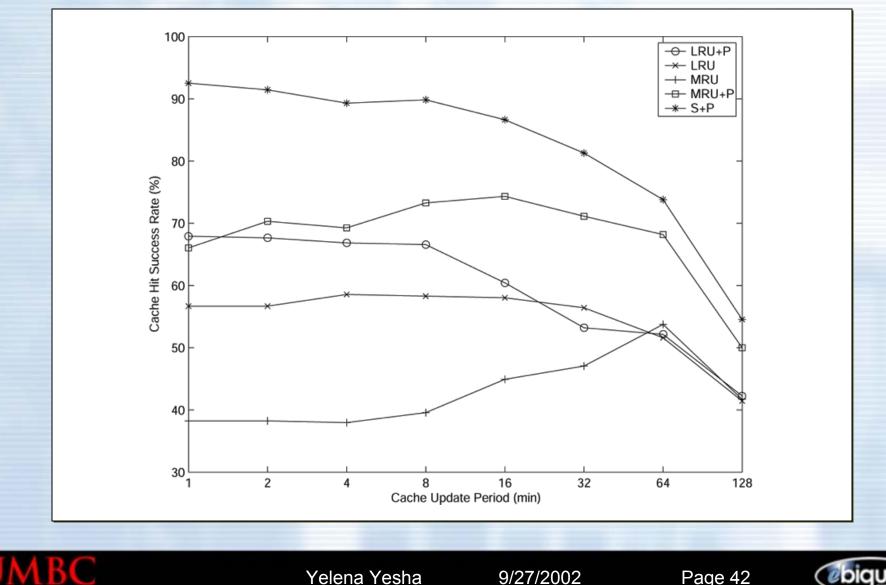
9/27/2002

Ex2: single queries with varying update

MARYLAND AN ONOR 1 N

Ex3: repeating queries with varying update

- How does each cache replacement algorithm perform given varying update periods and REPEATING queries?
 - Update period from 1 to 128 minutes
 - Person asks same queries once every 5-minute period during each activity
 - While driving from 8AM until 8:45AM, the person asks for traffic update once every 5 minutes = 9 queries
 - 374 queries total



Yelena Yesha

9/27/2002

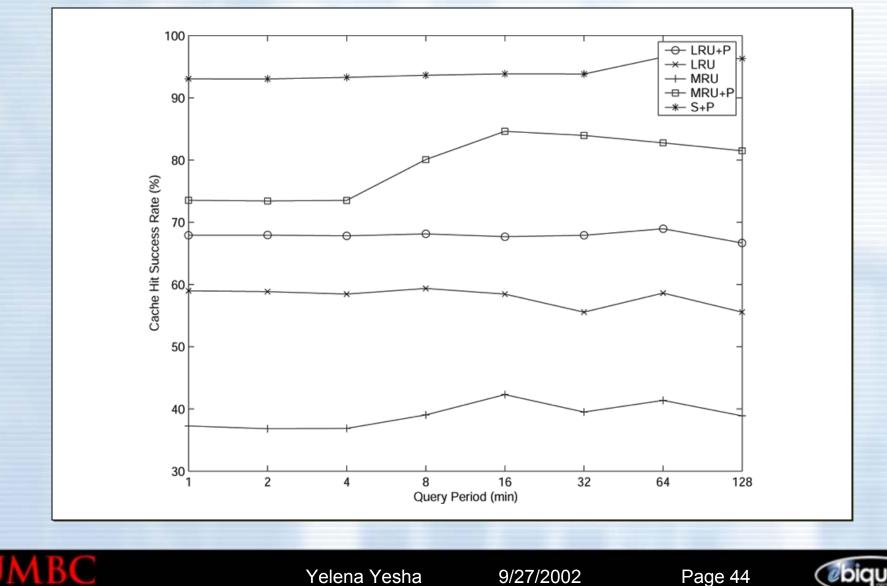
Ex3: repeating queries with varying update

AN MARYLAND 9/27/2002

Ex4: repeating queries with constant update

- 4. How does each cache replacement algorithm perform given a constant update period and queries repeating at different intervals?
 - Update period is fixed 5 minutes
 - More realistic scenario
 - Device can reflect context changes every 5 minutes to preserve resources
 - Person asks same queries once every N-minute period during each activity
 - N from 1 to 128 minutes

Semantic-based approach stays in 90% range



Yelena Yesha

9/27/2002

Ex4: repeating queries with constant update

AN MARYLAND

Ex5 and Ex6: on system performance

- Transmission time
 - Used laptops and iPAQs equipped with WLAN and Bluetooth cards
 - Sending1kB "query" from A to B and receiving response
 - over Bluetooth = 4.56s RTT
 - over 802.11= 27ms RTT

- Routing
 - Existential experiment with again laptops and iPAQs
 - Multiple hop routes with dynamic topology
 - Used the data-based routing
 - Worked but need better measurements

Yelena Yesha

9/27/2002

5. conclusions and future work

• We have

- Presented a need for DM in pervasive environments
- Defined issues associated with possible DM solutions
- Designed and described a preliminary implementation including
 - Query routing
 - Query processing
 - Semantics-based data caching
 - Limited notion of user profiles
 - Simple pro-active profile-initiated interaction

Still need (future work)

- Formal models for expressing the BDI-based profiles
- Better routing and caching algorithms
- More advanced (and faster) reasoning engines
- Transaction support

Yelena Yesha

9/27/2002

Yelena Yesha

9/27/2002

A N H O N O R S U N I V E R S I T Y I N M A R Y L A N D