outline

1. Introduction to pervasive environments
2. Motivation
3. Data management challenges
4. Design and Implementation
5. Conclusions and future work
1. introduction – the brave new world

- Devices increasingly more
 {powerful ^ smaller ^ cheaper}

- People interact daily with dozens of computing devices (many mobile):
 - Cars
 - Desktops/Laptops
 - Cell phones
 - PDAs
 - MP3 players
 - Transportation passes

→ Computing is becoming pervasive
the brave new world

- Many standalone devices, no interaction, no collaboration
traditional mobile computing

- Mobile devices = traditionally standalone
 - All required information present locally
 - Synchronization through “cable” connection

- Wireless connectivity = new way for data exchange
 - Cellular networks, satellites, LANs and short range networks

- Mobile devices now able to connect to the Internet
 - Client end-points in client/proxy/server model
 - Initiate actions
 - Receive information from servers

→ Mobile devices have wireless connectivity
before client/proxy/server model

→ Mobile devices treated as (dumb) clients in client/proxy/server information management models
client/proxy/server model

Mobile devices treated as (dumb) clients in client/proxy/server information management models
ad-hoc networking technologies

• Ad-hoc networking technologies (e.g. Bluetooth)
 • Main characteristics:
 • Short range
 • Spontaneous connectivity
 • Free, at least for now

• Mobile devices
 • Aware of their neighborhood
 • Can discover others in their vicinity
 • Interact with peers in their neighborhood
 • inter-operate and cooperate as needed and as desired
 • Both information consumers and providers

→ Ad-hoc mobile technology challenges the traditional client/server information access model
before peer-to-peer model

→ Peer-to-Peer Approach to Information Management
peer-to-peer model

→ Peer-to-Peer Approach to Information Management
pervasive environment paradigm

• Pervasive Computing Environment

 1. Ad-Hoc mobile connectivity
 • Spontaneous interaction

 2. Peers
 • Service/Information consumers and providers
 • Autonomous, adaptive, and proactive

 3. “Data intensive” “deeply networked” environment
 • Everyone can exchange information
 • Data-centric model
 • Some sources generate “streams” of data, e.g. sensors

→ Pervasive Computing Environments
• static and moving sensors
• database clouds with caching and computing functionality
• profiles and context knowledge

→ Hot topic
2. motivation – street scenario

- Cars, street signs, traffic lights and road-side businesses can exchange latest location-dependent information
motivation – conference scenario

- Smart-room infrastructure and personal devices can assist an ongoing meeting: data exchange, schedulers, etc.
imperfect world

• In a *perfect* world
 • everything available and done automatically

• In the *real* world
 • Limited resources
 • Battery, memory, computation, connection, bandwidth
 ➔ Must live with less than perfect results
 • Dumb devices
 ➔ Must explicitly be told What, When, and How
 • “Foreign” entities and unknown peers

• So, we really want

 Smart, autonomous, dynamic, adaptive, and proactive methods to handle data and services…
3. what is pervasive environment?

- A "type" of mobile distributed database / distributed file system
 - 4 orthogonal axes (Dunham and Helal, 1995)

- Challenges inherited from (common with) client/proxy/server models in wireless networks
 - Distributed data, low bandwidth and frequent disconnection
 - Query processing and optimization
 - location transparency and awareness
 - Caching
 - Replication
 - Name resolution
 - Transaction management
challenges – is that all? (1)

1. Spatio-temporal variation of data and data sources

 • All devices in the neighborhood are potential information providers
 • Nothing is fixed
 • No global catalog
 • No global routing table
 • No centralized control

 • However, each entity can interact with its neighbors
 • By advertising / registering its service
 • By collecting / registering services of others
2. Query may be explicit or implicit, but is often known up-front

- Users sometimes ask explicitly
 - e.g. tell me the nearest restaurant that has vegetarian menu items

- The system can “guess” likely queries based on declarative information or past behavior
 - e.g. the user always wants to know the price of IBM stock
3. Since information sources are not known a priori, schema translations cannot be done beforehand

- Resource limited devices
 - so hope for common, domain specific ontologies 😊

- Different modes:
 - Device could interact with only such providers whose schemas it understands
 - Device could interact with anyone, and cache the information in hopes of a translation in the future.
 - Device could always try to translate itself
 - Prior work in Schema Translation, Ongoing work in Ontology Mapping.
4. Cooperation amongst information sources cannot be guaranteed

- Device has reliable information, but makes it inaccessible
- Devices provides information, which is unreliable
- Once device shares information, it needs the capability to protect future propagation and changes to that information
challenges – is that all? (5)

• Need to avoid humans in the loop
 • Devices must dynamically "predict" data importance and utility based on the current context

• The key insight: declarative (or inferred) descriptions help
 • Information needs
 • Information capability
 • Constraints
 • Resources
 • Data
 • Answer fidelity

• Expressive Profiles can capture such descriptions
challenges – is that all (6)

- Use of profiles
 - Cherniak et al, 2002
 - Profiles = data domains + fixed utility values
 - Not specifically targeted to pervasive environments, but very applicable to them

PROFILE Traveler

DOMAIN

R = www.hertz.com
S = +shuttle +logan +downtown
D = +directions +logan +boston +downtown

UTILITY

U (S) = UPTO (1,2,0)
U (R [#D > 0]) = 5
4. Our data management architecture

MoGATU

- Design and implementation consists of
 - Data
 - Metadata
 - Profiles
 - Entities
 - Communication interfaces
 - Information Providers
 - Information Consumers
 - Information Managers
MoGATU P2P model representation
MoGATU P2P model representation

- Information Generator Y
- Information Provider X
- InforMa
- Routing Information
- Information Provider X
- Information Generator Y
- Bluetooth Interface
- 802.11b Interface
- User Interface

MoGATU P2P model representation
MoGATU – metadata

• Metadata representation
 • To provide information about
 • Information providers and consumers,
 • Data objects, and
 • Queries and answers
 • To describe relationships
 • To describe restrictions
 • To reason over the information

→ Semantic language
 • DAML+OIL / DAML-S

• http://mogatu.umbc.edu/ont/
MoGATU – profile

- Profile
 - User – preferences, schedule, requirements
 - Device – constraints, providers, consumers
 - Data – ownership, restriction, requirements, process model

- Profiles based on BDI models
 - Beliefs are “facts”
 - about user or environment/context
 - Desires and Intentions
 - higher level expressions of beliefs and goals

- Devices “reason” over the BDI profiles
 - Generate domains of interest and utility functions
 - Change domains and utility functions based on context
MoGATU – entities

- Communication Interface
 - Network abstraction
 - Routing / Discovery not concerned with underlying network
 - Registers and interacts with local Information Manager (InforMa)
 - InforMa still aware of the network attributes

- Information Provider
 - Subset of a world knowledge
 - Registers and interacts with local InforMa

- Information Consumer
 - Access to information through local InforMa
 - Registers and interacts with local InforMa
MoGATU – information manager (1)

- One Information Manager (*InforMa*) per device
 - Various types based on device strength and will

- Indexing / Discovery
 - Through advertisements and solicitations
 - Relying on local cache
 - No fixed schema or ontology

- Advertisement
 - Implicit discovery
 - Advertise local (and even remote) providers / answers
 - Local providers *must* register with local *InforMa*

- Solicitation
 - Explicit discovery
 - Asks for remote providers / answers
MoGATU – information manager (2)

- Routing
 - Data-based table routing
 - Promiscuous mode
 - Uses cached advertisement information
 - Matching using CLIPS

```
informa_route_query(f, t, query) {
    if (local(t))
        if (answer = cached_answer(query) && valid(answer)) return answer
        if (answer = contact_local_info_provider(f, t, query)) return answer
        else error(no_answer)

    if (intercept_foreign_queries)
        if (answer = cached_answer(query) && valid(answer)) return answer;

    if (willing_to_forward)
        if (nexthop = lookup(t)) return forward_to(nexthop)
        else
            if (local(o)) forward_to_random(o, d, query)
            else error(no_destination)
        else error(forwarding_denied)
        error(no_answer)
}
```
MoGATU – information manager (3)

- Caching
 - Caches incoming data messages
 - DAML+OIL encoded information in profiles and data objects
 - Hits based on reasoning over associated metadata
 - Using CLIPS for reasoning
 - Replacement policies
 - Traditional LRU and MRU
 - Traditional LRU and MRU + profile-based space pre-allocation
 - Semantic-based
 - Space pre-allocation based on context and profile knowledge
 - Dynamic utility values for each cache entry based on context and profile
 - Using CLIPS
MoGATU – implementation

- Implemented
 - Communication interface for Bluetooth and Ad-hoc 802.11
 - Providers for gas, weather, traffic information, etc.
 - Consumers representing cars and PDAs
 - InforMa with preliminary support for
 - Query routing
 - Query processing
 - Semantics-based data caching
 - Limited notion of user profiles
 - Simple pro-active profile-initiated interaction
MoGATU – experiments

• Conducted experiments to evaluate

 1. How context and profile knowledge affect cache pre-allocation

 2. Performance of the semantic-based cache replacement algorithm against LRU and MRU approaches

 3. Networking aspect of the framework
 • Transmission time
 • Routing
MoGATU – simulation settings

• One day activity of a person
 • Starts at 8AM in Annapolis
 • Travels to Washington D.C. for 10AM meeting
 • Lunch at noon
 • Travels to UMBC for 2PM meeting
 • Shopping from 4:30PM until 5:30PM
 • Dinner at 8PM in Annapolis

• Her PDA has some profile knowledge
 • Limited information about the schedule
 • Plus other information about preferences and requirements
MoGATU – simulation settings

• Information sources
 • Represent cars, street lights, buildings, subway and people
 • At every time instance some sources may be available

• Available information
 • Different type (8)
 • Directions, traffic, gas, parking, merchandise, dining, subway, and anything else
 • Different utility value
 • Dynamically computed by each Information Manager based on context and profile knowledge
Ex1: cache allocation

1. How does profile-based pre-allocation compare to measured LRU cache allocation?

 a) Recorded cache content at every minute of the 12-hour simulation period while using traditional LRU for cache replacement

 b) Computed how context and profile knowledge affects cache pre-allocation

 c) Computed how a prior omniscient knowledge would affect cache pre-allocation

→ Without using the additional knowledge, some important data were not cached
 • LRU did not cache any subway data
 • LRU kept on caching restaurant data after the lunch was over
Ex1: cache allocation

Measured cache allocation when using LRU only

Computed cache pre-allocation using context and profile knowledge

Computer cache pre-allocation when everything is known apriori

Time of the day
8:00AM 9:40AM 11:20AM 1:00PM 2:40PM 4:20PM 6:00PM 7:40PM
Ex2: single queries with varying update

2. How does each cache replacement algorithm perform given varying update periods and single queries only?

- Update period from 1 to 128 minutes
 - Device’s preferred refresh rate to prolong battery life
 - A rate at which information providers appear/disappear
 - Most data has 10-minute lifetime

- Person asks 1 to 4 unique queries during each activity
 - While driving, one query about traffic, one for a gas station, etc.
 - 54 queries total
Ex2: single queries with varying update

![Graph showing cache hit success rate over cache update period (min). The graph compares different cache policies: LRU, LRU+P, MRU, MRU+P, and S+P. The x-axis represents cache update period in minutes, ranging from 1 to 128. The y-axis represents cache hit success rate, ranging from 30% to 100%. Each policy has a distinct line indicating its performance over time.]
Ex3: repeating queries with varying update

3. How does each cache replacement algorithm perform given varying update periods and REPEATING queries?

• Update period from 1 to 128 minutes

• Person asks same queries once every 5-minute period during each activity
 • While driving from 8AM until 8:45AM, the person asks for traffic update once every 5 minutes = 9 queries
 • 374 queries total
Ex3: repeating queries with varying update

![Graph showing cache hit success rate over cache update period (min)]
Ex4: repeating queries with constant update

4. How does each cache replacement algorithm perform given a constant update period and queries repeating at different intervals?

- Update period is fixed 5 minutes
 - More realistic scenario
 - Device can reflect context changes every 5 minutes to preserve resources

- Person asks same queries once every N-minute period during each activity
 - N from 1 to 128 minutes

→ Semantic-based approach stays in 90% range
Ex4: repeating queries with constant update

![Graph showing cache hit success rate over query period in minutes. The graph compares different cache management policies: LRU+P, LRU, MRU, MRU+P, and S+P. The x-axis represents the query period in minutes, ranging from 1 to 128, and the y-axis represents the cache hit success rate in percentage, ranging from 30% to 100%. Each policy has a line indicating its performance over the query period.](image-url)
Ex5 and Ex6: on system performance

• Transmission time
 • Used laptops and iPAQs equipped with WLAN and Bluetooth cards
 • Sending 1kB “query” from A to B and receiving response
 • over Bluetooth = 4.56s RTT
 • over 802.11 = 27ms RTT

• Routing
 • Existential experiment with again laptops and iPAQs
 • Multiple hop routes with dynamic topology
 • Used the data-based routing
 • Worked but need better measurements
5. conclusions and future work

• We have
 • Presented a need for DM in pervasive environments
 • Defined issues associated with possible DM solutions
 • Designed and described a preliminary implementation including
 • Query routing
 • Query processing
 • Semantics-based data caching
 • Limited notion of user profiles
 • Simple pro-active profile-initiated interaction

• Still need (future work)
 • Formal models for expressing the BDI-based profiles
 • Better routing and caching algorithms
 • More advanced (and faster) reasoning engines
 • Transaction support
questions