
Amr El Abbadi
Computer Science, UC Santa Barbara

amr@cs.ucsb.edu

Collaborators: Divy Agrawal, Sudipto Das, Aaron Elmore,

Hatem Mahmoud, Faisal Nawab, and Stacy Patterson.

Brisbane 2013

21

101 99

169

341

173

260

Brisbane 2013

App
Server

App
Server

App
Server

Load Balancer (Proxy)

App
Server

MySQL
Master DB

Client Site

App
Server

Client Site Client Site

Database becomes the
Scalability Bottleneck

Cannot leverage elasticity

Brisbane 2013

App
Server

App
Server

App
Server

Load Balancer (Proxy)

App
Server

MySQL
Master DB

Client Site

App
Server

Client Site Client Site

Brisbane 2013

Key Value
Stores

App
Server

App
Server

App
Server

Load Balancer (Proxy)

App
Server

Client Site

App
Server

Client Site Client Site

Scalable and Elastic,
but limited consistency and

operational flexibility
Brisbane 2013

Brisbane 2013

• “Towards Robust

Distributed Systems”

PODC 2000.

• “CAP Twelve Years

Later: How the

"Rules" Have

Changed” IEEE

Computer 2012

Brisbane 2013

 Operations on a single row are atomic.

 Objective: make read operations single-sited!

 Scalability and Elasticity: Data is partitioned
across multiple servers.

 Bigtable , PNUTS , Dynamo, Hypertable,
Cassandra, Voldemort

Brisbane 2013

 Scale-up
◦ Classical enterprise setting

(RDBMS)

◦ Flexible ACID transactions

◦ Transactions in a single node

 Scale-out
◦ Cloud friendly (Key value stores)

◦ Execution at a single server

 Limited functionality & guarantees

◦ No multi-row or multi-step
transactions

Brisbane 2013

Brisbane 2013

 Application developers need higher-level
abstractions:
◦ MapReduce paradigm for Big Data analysis

◦ Transaction Management in DBMSs

Brisbane 2013

 NoSQL: Key-Value Stores
◦ No Transactions.
◦ Bigtable, Pnuts, Dynamo, Casandra,….

 SQL Take 1: Locality-based transactions
◦ Limited Transactions
◦ ElasTraS, G-Store, SQL-Azure, Relational Cloud

 SQL Take 2: Multi-data Centers
◦ The Return of Transactions.
◦ MegaStore
◦ Paxos-CP
◦ Spanner
◦ Message-Futures
◦ ……

Brisbane 2013

Brisbane 2013

 It’s nice to have JOINs

 It’s nice to have transactions

 After 30 years of development, it seems that
SQL Databases have some solid features, like
the query analyzer.

 NoSQL is like the Wild West; SQL is civilization

 Gee, there sure are a lot of tools oriented
toward SQL Databases.

Peter Wayner at InfoWorld “Seven Hard Truths”
about NoSQL technologies July 2012.

Brisbane 2013

Brisbane 2013

RDBMS
Key Value Stores

Fusion
 Fission

G-Store [SoCC ‘10]
MegaStore [CIDR ‘11]
ecStore [VLDB ‘10]
Walter [SOSP ‘11]

ElasTraS [HotCloud ’09, TODS]
Cloud SQL Server [ICDE ’11]
RelationalCloud [CIDR ‘11]

Brisbane 2013

These systems question the wisdom of
abandoning the proven data
management principles

Gradual realization of the value of the
concept of a “transaction” and other
synchronization mechanisms

Avoid distributed transactions by co-locating
data items that are accessed together

Brisbane 2013

 Pre-defined
partitioning
scheme
◦ e.g.: Tree schema

◦ ElasTras, SQLAzure

◦ (TPC-C)

 Workload driven
partitioning scheme
◦ e.g.: Schism in

RelationalCloud

Brisbane 2013

 Semantically pre-defined as Entity Groups
◦ Blogs, email, maps

◦ Cheap transactions in Entity groups (common)

Brisbane 2013

Semantically Predefined
 Email
◦ Each email account forms a natural entity group
◦ Operations within an account are transactional: user’s

send message is guaranteed to observe the change
despite of fail-over to another replica

 Blogs
◦ User’s profile is entity group
◦ Operations such as creating a new blog rely on

asynchronous messaging with two-phase commit

 Maps
◦ Dividing the globe into non-overlapping patches
◦ Each patch can be an entity group

Brisbane 2013

 Access patterns evolve, often rapidly
◦ Online multi-player gaming applications

◦ Collaboration based applications

◦ Scientific computing applications

 Not amenable to static partitioning
◦ Transactions access multiple partitions

◦ Large numbers of distributed transactions

 How to efficiently execute transactions while
avoiding distributed transactions?

Brisbane 2013

 Transactional access to a group of data
items formed on-demand
◦ Dynamically formed database partitions

 Challenge: Avoid distributed transactions!

 Key Group Abstraction
◦ Groups are small

◦ Groups have non-trivial lifetime

◦ Groups are dynamic and on-demand

 Multitenancy: Groups are dynamic tenant
databases

Brisbane 2013

Brisbane 2013

Ownership
of keys at a
single node

Key
Group

 One key selected as the
leader

 Followers transfer
ownership of keys to
leader

Grouping Protocol

 How does the leader execute transactions?
◦ Caches data for group members  underlying data

store equivalent to a disk

◦ Transaction logging for durability

◦ Cache asynchronously flushed to propagate updates

◦ Guaranteed update propagation

Brisbane 2013

Log
Transaction Manager

Cache Manager
Leader

Followers

Asynchronous update
Propagation

Brisbane 2013

Grouping
Layer

Key-Value Store
Logic

Distributed Storage

Application Clients

Transactional Multi-Key Access

G-Store

Transaction
Manager

Grouping
Layer

Key-Value Store
Logic

Transaction
Manager

Grouping
Layer

Key-Value Store
Logic

Transaction
Manager

Grouping middleware layer resident on top of a key-value store

 Implemented using HBase
◦ Added the middleware layer

◦ ~15000 LOC

 Experiments in Amazon EC2

 Benchmark: An online multi-player game

 Cluster size: 10 nodes

 Data size: ~1 billion rows (>1 TB)

 For groups with 100 keys
◦ Group creation latency: ~10 – 100ms

◦ More than 10,000 groups concurrently created

Brisbane 2013

Brisbane 2013

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160 180 200

L
a

te
n

cy
 (

m
s)

of Concurrent Clients

Average Group Operation Latency (100 Opns/100 Keys)

GStore - Clientbased GStore - Middleware HBase

•Hello,
•A few days ago we sent you an email letting
you know that we were working on
recovering an inconsistent data snapshot of
one or more of your Amazon EBS
volumes. We are very sorry, but ultimately
our efforts to manually recover your volume
were unsuccessful...
•What we were able to recover has been
made available via a snapshot, although the
data is in such a state that it may have little
to no utility...
•If you have no need for this snapshot,
please delete it to avoid incurring storage
charges.

 Need to tolerate catastrophic failures
◦ Geographic Replication

 How to support ACID transactions over data
replicated at multiple datacenters
◦ One-copy serializablity: Gives Consistency and Replication.

Clients can access data in any datacenter, appears as single
copy with atomic access

 Major challenges:
◦ Latency bottleneck (cross data center communication)

◦ Concurrent Consistency

◦ Replica Consistency

Brisbane 2013

Brisbane 2013

The Paxos Approach

Brisbane 2013

•User

Megastore-Google (CIDR11)
PaxosCP-UCSB (VLDB12)

Log
position

1 2 3 4 5

Transactio
n

α β γ

Paxos

•User
•User

Paxos

user

Brisbane 2013

Brisbane 2013

Transaction Client
Library

Transaction Service

Stores multiple
versions of
each attribute

Data Model & Write-Ahead Log

Data divided into entity groups.
Each group has write-ahead log.
Data and log replicated at every datacenter.
Optimistic concurrency control:

◦Read from datastore.
◦Write to local copy.
◦On commit, write to log.
◦ Log entry: (txn_id, read set, write set)

Log entries applied to data as needed.

Every tenant has a write-ahead log, replicated at
every datacenter.

Transaction operations:

• Read version based on read log position.

• Write in to local copy.

• Commit
• If read-only, automatic commit.
• Else, try to commit to commit log position.

Transaction Services coordinate using PAXOS to decide
whether to commit or abort.

Brisbane 2013

 Paxos for state machine replication (Lamport98).
 Here used for concurrency control and log
replication – one Paxos instance per log position.

Brisbane 2013

TC TS TC TS TC

TS

TS

TS

TS

Only one transaction wins each log position.

Others are aborted  Concurrency Prevention

not Concurrency Control!
Write transactions

are serialized!

prepare(ballot#) last vote accept(value)

TS

TS

TS

ack apply(value)

Choose value
with largest
ballot number.

Write value in
log.

If no majority value in “last vote”
messages
 combine nonconflicting values,
 send accept for combined values.

Else if majority respond and no
conflicts with winning transaction
 promote to next log position
 (repeatedly).

Else continue basic Paxos

Brisbane 2013

TC TS TC

TS

TS

prepare(ballot #) last vote

Paxos-CP only aborts a transaction if commit would violate

one-copy serializability, ie, a conflict with a preceding write

  true Concurrency Control.

• Prototype implementation:

◦ Basic Paxos and Paxos-CP, in Java

◦ Hbase for key-value store

◦ Modified YCSB benchmark (Cooper SOCC’10, Das VLDB’11)

• Evaluation setting:
◦ Run on Amazon’s public cloud

◦ Using medium Hi-CUP instances with Elastic Block Storage

◦ 3 nodes in Virginia, 1 in Oregon, 1 in California

• Benchmark workload:

◦ 500 transactions

◦ Each transaction access 10 attributes, 50% reads, 50% writes

Brisbane 2013

lMulti-data center experiments on EC2

l Virginia – Oregon – California

Brisbane 2013

Calculated from averages for all combinations of replica locations.

1 transaction per second. 100 total attributes.

Asynchronous coordination

Brisbane 2013

Datacenter A Datacenter B

Brisbane 2013

Datacenter A Datacenter B

Latency

Brisbane 2013

Message Futures – UCSB [CIDR 13]

•Data center A •Data center B

•12

•13

•Transactions

requesting to commit

in the green

•area are assigned

•reservation number

12

•Log A-12

•Log B

•Transactions in the

red

•region and earlier are

•included in Log B

•Green area

transactions

•Commit at point 13 if

no Conflicts are

observed with Log B

•Log B acknowledges

•The receipt of

•Reservation 12

•Log A-12 carries a

•Reservation with

•A value 12

Message Futures cases

•DC A •DC B

•12

•Immediate

commits

•Data center B sends Logs at a higher rate.

•A new transactions at the immediate commit zone

•will have its reservation (12) already acknowledged

•User

Message Futures

Replicated Log

•User

Replicated

Log

user

Brisbane 2013

Transaction execution ON
fault-tolerant replicated
storage

Brisbane 2013

•User

Paxos Leader

Paxos Leader

Paxos Leader

Spanner—Google [OSDI 12]

2PC

Paxos

user

Brisbane 2013

1 3 4 6 Number of wide-area messages:

Replication on Consistent
ACID Data Centers

Brisbane 2013

•User

Data center Leader

Replicated Commit --UCSB [in-
progress]

2PC

Paxos

Data center Leader

user

Brisbane 2013

1 2 Number of wide-area messages:

lMulti-data center experiments on EC2

l Virginia – Oregon – California – Ireland – Singapore

Brisbane 2013

Replicated Log is the class of protocols containing Google’s

Spanner. CVO is a 3-data center scenario and C/V/O is a

replicated log scenario with 3 replica leaders at C, V, and O.

 Better understand the various paradigms and
alternatives.

 Develop a general framework to explain the
pros and cons of these approaches.

 Automatically configure systems for better
performance.

 We are in the era of Globalization

Brisbane 2013

21

101 99

169

341

173

260

Brisbane 2013

