
Database Systems Meet
Non-Volatile Memory
PER-AKE (PAUL) LARSON

Agenda
 NVRAM characteristics and types

 Application access to NVRAM

 NVRAM programming challenges

 And a couple of solutions

Speeding up logging and replication with NVRAM

 Storing the database in NVRAM

9/15/2016 DBMSS MEET NVRAM 2

NVDIMM (a.k.a. NVDIMM-N)

 DRAM + flash + power source

 DRAM content
 saved to flash on power failure

 restored on power up

 16 GB DIMMS available now

 ++ normal DRAM speed

 -- reduced memory capacity
 (smaller DIMMs, space for supercaps)

 -- more expensive than DRAM

9/15/2016 DBMSS MEET NVRAM 3

3D XPoint Memory
 Joint development by Intel and Micron

 Announced publicly July 2015

 Physical storage mechanism has not been disclosed

 ++High density, stackable (2 layers initially)

 -- Reads 2-3X slower than DRAM
 Mitigated by caches – net effect unclear

 Used in Intel’s Optane SSDs (end of 2016)
 7X more IOPS, 5-10X lower latency than flash-based SSD

 DIMMs to be released in 2017

9/15/2016 DBMSS MEET NVRAM 4

STT-MRAM (Spin Torque Transfer – Magnetic RAM)

 Resistance depends on polarization of free layer

 Switched by passing a polarized current through
the MTJ “layer cake”

 ++ Very fast (SRAM speed), unlimited endurance

 -- Low density (currently)

 256 Mb DIMMs available now (DRAM at 64 GB DIMMs)

 Specialty applications for now: satellites, automotive,
disk controllers, embedded systems, …

 Ideal NVRAM if they could just up the density…

9/15/2016 DBMSS MEET NVRAM 5

Agenda
 NVRAM characteristics and types

 Application access to NVRAM

 NVRAM programming challenges

 And a couple of solutions

Speeding up logging and replication with NVRAM

 Storing the database in NVRAM

9/15/2016 DBMSS MEET NVRAM 6

Application access to NVRAM
The physical NVRAM space is modeled and managed much like a disk
 Divide up space into volumes (partitions)
 Format volume as either
 Block addressable – accessed through file read and write commands

 Byte addressable (DAX) – accessed by processor load and store instructions

 Create files on the volume

 To access data in a DAX file, an application
 Memory maps the file into its address space
 Accesses it in the same way as DRAM

 Changes to DAX memory mapped files are persisted immediately
 Persisting changes to disk-based memory mapped files require a file flush

 Same conceptual model on Linux and Windows

9/15/2016 DBMSS MEET NVRAM 7

Performance comparison

IOPS MB/sec Latency (ns)

Fast NVMe SSD 14,553 57 66,532

Block-mode NVDIMM 148,553 580 6,418

Memory-mapped NVDIMM 1,112,007 4,344 828

9/15/2016 DBMSS MEET NVRAM 8

Test: copying 4K blocks to a file in NVDIMM, single threaded, Windows Server 2016

Going through the IO stack slows down block mode by 7.5X

Agenda
 NVRAM characteristics and types

 Application access to NVRAM

 NVRAM programming challenges

 And a couple of solutions

Speeding up logging and replication with NVRAM

 Storing the database in NVRAM

9/15/2016 DBMSS MEET NVRAM 9

Persistence isn’t automatic…
 A write only modifies the target in the CPU cache

 Making it persistent requires flushing the cache line
 Copies line to the memory controller’s write buffer

 Code sequence for persisting data
1. MOV R1, X1

2. CLWB X1 or CLFLUSH X1

3. sfence

 CLFLUSH also evicts the line from cache
 Slows down subsequent access

 CLWB (CL write back) does not evict the line
 New instruction – big improvement

 Note: cache subsystem can evict a line at any time
 We don’t have full control over when a data item is persisted

9/15/2016 DBMSS MEET NVRAM 10

CPU

L1 – L3 caches

DRAM/NVRAM

Reads

Writes

Write buffer

Persistence domain

And it isn’t atomic!

9/15/2016 DBMSS MEET NVRAM 11

Cache

A

Mem

Thread 1

Thread 1 inserts A but
blocks before
persisting the pointer

Cache

A

Mem

Thread 2

B

Thread 2 appends B,
persists B and the
pointer to it

Kaboom

Must prevent other threads from reading a non-persisted value!

A

Mem

After recovery

B

A

Mem

B

Correct
state

Actual
state

Unreachable

But wait – there’s more!!!
 Leaked memory is gone forever
 Ownership of a persistent memory block must be clear at all times

 Transfer of ownership needs to be atomic

 Wear a safety harness whenever possible
 Being able to determine which blocks are free/in use by scanning a DAX file and/or a allocator’s arena

 Being able to rebuild redundant data structures (indexes, …) from some base data

 Crashes happen – fast recovery a must
 Recovery is the final defense – this code just has to work

 And it has to be fast too – it’s one of the main selling points of NVRAM

 Don’t ignore cascading crashes (crashes during recovery)

9/15/2016 DBMSS MEET NVRAM 12

Agenda
 NVRAM characteristics and types

 Application access to NVRAM

 NVRAM programming challenges

 And a couple of solutions

Speeding up logging and replication with NVRAM

 Storing the database in NVRAM

9/15/2016 DBMSS MEET NVRAM 13

How to prevent premature reading
Approach intended for pointers and status-type fields (max 64 bit wide)

Reserve one bit as a NeedsPersisting flag in each word

 Updates of the word always has the flag set

 Any thread that sees the flag set, resets the flag and flushes the word

1. Int64 ReadPersistentField(Addr)
2. Begin
3. val = *Addr
4. while(NeedsPersisting(val))
5. rval = CAS(Addr, val, ClearNeedsPersistingBit(val) ;
6. if(rval == val) Persist(Addr) ; exitloop; endif
7. val = *Addr ;
8. endloop
9. return val ;
10. end

9/15/2016 DBMSS MEET NVRAM 14

Persistent multi-word CAS (PMwCAS)
Need lock-free data structures also in NVRAM
 Doubly linked list, memory allocators, hash tables, B-trees, …

Lock-free data structures are difficult to implement and potentially slow in NVRAM

 Our approach: implement an efficient lock-free and persistent multi-word CAS operation
 Atomically modifies and persists multiple 64-bit words in NVRAM – basically an ACID transaction

 Based on algorithms by Harris, Fraser and Pratt et al from 2002
 Our contribution: efficient implementation and persistence

 Classical two-phase algorithm using a descriptor
 Descriptor specifies what the operation is to do and its current state

 Non-blocking – threads help each other complete an operation

9/15/2016 DBMSS MEET NVRAM 15

Harris, Timothy L., Fraser, Keir, Pratt, Ian A., A Practical Multi-word Compare-and-Swap Operation", DISC 2002, 265-279

Algorithm from 30,000 feet
1. Persist descriptor
2. Phase 1:
3. Attempt to swap a pointer to the MwCAS descriptor into every target word but
4. only as long as the descriptor status = UNDECIDED
5.
6. Persist all modified cache lines
7. If all pointer swaps succeeded, set descriptor status to SUCCEEDED else to FAILED
8. Persist status field
9.
10. Phase 2:
11. if status = SUCCEEDED then swap the new value into every target word

12. if status = FAILED then attempt to swap in the old value into every target word
(Fails if the word no longer contains the original old value but that’s OK.)

13. Persist all modified cache lines
14. Set descriptor status to FINISHED
15. Persist status field

9/15/2016 DBMSS MEET NVRAM 16

How fast is it?
Micro-benchmark comparing MwCAS
against Intel’s HTM implementation (RTM)

 Without persistence because RTM does
not guarantee persistence

 Threads atomically update 4 randomly
chosen words in an array

 Throughput depends on contention
 MwCAS wins big under high contention
 Helping helps!

 RTM 10-15% faster under low contention

9/15/2016 DBMSS MEET NVRAM 17

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8

Su
cc

es
sf

u
l o

p
er

at
io

n
s/

s

M
ill

io
n

s

Concurrent threads

Atomically updating 4 words

100 array

1M array

10M array

RTM 100 array

RTM 1M array

RTM 10M array

Performance on skip lists

Lock-free skip list (using CAS) vs skip list using MwCAS; doubly linked

 Initial size 100K, equal proportion of insert, delete, lookup, scan, reverse scan

 Max scan length 100 items

9/15/2016 DBMSS MEET NVRAM 18

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8

Su
cc

es
sf

u
l o

p
s/

s

M
ill

io
n

s

Concurrent threads

Successful ops/s

CAS PCAS MwCAS PMwCAS

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8

To
ta

l o
p

s/
s

M
ill

io
n

s

Concurrent threads

Total ops/s

CAS PCAS MwCAS PMwCAS

Agenda
 NVRAM characteristics and types

 Application access to NVRAM

 NVRAM programming challenges

 And a couple of solutions

Speeding up logging and replication with NVRAM

 Storing the database in NVRAM

9/15/2016 DBMSS MEET NVRAM 24

Speeding up logging with NVRAM
 Need group commit even with SSDs
 Trading commit latency for higher throughput

 Solution: keep the tail of the log in NVRAM
 Write log records to NVRAM buffers and commit to NVRAM

 Flush NVRAM log buffers to storage in large chunks

 A few tens of MBs is sufficient

 Benefits: fast commit (10-50 microsec), higher log throughput

Having the tail of the log in NVRAM is sufficient – the whole
log is overkill

9/15/2016 DBMSS MEET NVRAM 25

Log buffer

SSD

NVRAM

Log tail

Memory

High Performance Network Characteristics

Remote Direct Memory Access (RDMA)
◦ Once expensive high-bandwidth network only used in

high-performance computing

◦ Currently becoming cost-competitive

◦ Bandwidth/latency characteristics improving

◦ Four dual-port FDR 4x NICs provide roughly the same
aggregate bandwidth as DDR3-1600 four-way memory
channel

◦ Kernel and CPU bypass: read and write remote memory
directly

Data Direct I/O
◦ DMA execution places data directly into CPU L3 cache (if

target address is cache-resident)

◦ Problematic if target address in NVRAM

9/15/2016 DBMSS MEET NVRAM 26

High-Speed Query Processing over High-Speed Networks

PVLDB 9(4), pp. 228-239, 2015

Infiniband

Type

Latency
(us)

Throughput

(GB/s)

SDR (2003) 5 1

DDR (2005) 2.5 2

QDR (2007) 1.3 4

FDR (2011) 0.7 6.8

EDR (2014) 0.5 12.1

Speeding up HA (synchronous replication)
 Today: commit a transaction when all synchronous
replicas have written its log records to their disks
 Painfully slow

 NVRAM to the rescue
 Write log records locally to NVRAM

 Write them also to NVRAM buffers of all synchronous
replicas using RDMA

 Commit transaction

 No need to wait for disk writes to complete!

 Commit latency of 10-30 microsec possible
 No more group commit!

9/15/2016 DBMSS MEET NVRAM 27

Log buffer SSD

NVRAM

Log tail

Primary

NVRAM

Log tail SSD

Secondary

RDMA

Agenda
 NVRAM characteristics and types

 Application access to NVRAM

 NVRAM programming challenges

 And a couple of solutions

Speeding up logging and replication with NVRAM

 Storing the database in NVRAM

9/15/2016 DBMSS MEET NVRAM 28

Hekaton in a nutshell
 Main-memory database engine integrated into SQL Server

 Engine uses only lock-free (latch-free) data structures

 Multiversioned records – an update always creates a new version
 Readers no longer conflicts with writers higher throughput

 Each record has two timestamps: begin TS and end TS

 Two index types: hash indexes and range indexes (BW-tree)

 Optimistic concurrency control – no locks, no lock manager

9/15/2016 DBMSS MEET NVRAM 29

Transaction phases

Get txn start timestamp, set state to Active

Perform normal processing
◦ remember read set, scan set, and write set

Get txn end timestamp, set state to Validating

Validate reads and scans

If validation OK, write new versions to redo log

Set state to Committed

Fix up version timestamps
◦ Begin TS in new versions, end TS in old versions

Set state to Terminated

Remove from transaction map

Begin

Precommit

Commit

Terminate

Normal
processing

Validation

Post-
processing

Txn events Txn phases

9/15/2016 30DBMSS MEET NVRAM

Design approach
 Goals: no logging and checkpointing, faster recovery, minimally intrusive design

 Records are persisted in NVRAM, indexes are not

 Indexes are rebuilt on recovery
 Index links still embedded in records but recomputed as part of recovery

 Each transaction acquires a log buffer in NVRAM
 Short lived: acquired before commit, released when postprocessing is completed

 Used during recovery to complete postprocessing of committed transactions

 From a fixed pool of log buffers

 Stores commit timestamp, pointers to txn’s old and new versions plus some additional info

 Includes a state field: FREE, FILLING, FILLED

 Recovery checks all slots in NVRAM that may contain a record
 Each table has a separate heap

 Records stored on “super pages” in fixed-size slots

 Memory management ensures that we can find all “super pages” owned by the database

9/15/2016 DBMSS MEET NVRAM 31

Validation phase

9/15/2016 DBMSS MEET NVRAM 32

1. Step 1: Validation.

1. Validate reads and scans to the extent required by the transaction’s isolation level. If validation

fails, abort the transaction in the normal way, otherwise continue.

2. Step 2: Persist database changes and log buffer

1. Scan the write set and flush all cache lines modified by the transaction.

2. Locate a FREE log buffer in the log buffer pool and set its state to FILLING.

3. Copy the following from the transaction object into the log buffer: transaction ID, commit

timestamp, pointers to old versions, and pointers to new versions.

4. Flush all cache lines covering the log buffer. All changes to the database and the log buffer

content are now durable.

3. Step 3: Commit transaction

1. Set the log buffer state to FILLED.

2. Flush the cache line covering the log buffer state.

Postprocessing phase

9/15/2016 DBMSS MEET NVRAM 33

1. Step 1: Finalize timestamps

1. Scan the write set and update timestamps of transaction’s new and old versions.

2. Flush all modified cache lines. The timestamp changes are now durable.

2. Step 2: Free transactions log buffer

1. Set the log buffer state to FREE and return it to the log buffer pool.

2. Flush all cache lines just modified.

3. Terminate the transaction in the normal way.

Database recovery (1/2)

9/15/2016 DBMSS MEET NVRAM 34

1. Phase 1: Complete postprocessing of committed transactions.

1. For each log buffer lb in state FILLED do.

1. Scan list of pointers to old versions. For each old version, set the end timestamp to lb’s

commit timestamp.

2. Scan the list of pointers to new versions. For each new version, set the begin

timestamp to lb’s commit timestamp.

3. Flush all cache lines modified in the previous two steps.

2. The postprocessing for all transactions that committed before the crash has now been

completed and the timestamp changes are durable.

2. Phase 2: Clean up log buffer pool.

1. For each log buffer in state FILLED or FILLING, set its state to FREE.

2. Flush all cache lines modified in the previous step. All log buffers in the pool are now FREE.

Database recovery (2/2)

9/15/2016 DBMSS MEET NVRAM 35

1. Phase 3: Rebuild indexes and free unused record slots

1. For each NVRAM page p owned by the database do.

1. Initialize p’s header fields and set it’s free list to empty.

2. For each slot sl on page p do

1. If sl.BeginTS equals zero, add the slot to p’s free list.

2. if sl.BeginTS contains a transaction ID, the slot contains an uncommitted record so set

sl.BeginTS to zero and add the slot to p’s free list.

3. If sl.BeginTS contains a timestamp value, check sl.EndTS

1. If sl.EndTS equals infinity, it is a current version so determine which table it belongs to and

add it to the appropriate indexes.

2. If sl.EndTS contains a transaction ID, a transaction attempted to delete it but didn’t

commit so set sl.EndTS to infinity, determine which table it belongs to and add it to the

appropriate indexes.

3. If sl.EndTS contains a timestamp value, the version was deleted by a committed

transaction so set sl.BeginTS to zero and add the slot to p’s free list.

3. Flush all cache lines on page p that were modified.

2. End of recovery. Begin normal processing.

Summary
Small NVRAM is already here and larger ones are coming
 OS support based on memory-mapped files

 Programming against NVRAM is non-trivial
 Persistence is neither automatic nor atomic

 Memory leaks are forever

 Recovery code required

 Sketched a couple of ways to ensure atomicity
 Persist-before-read and PMwCAS

 NVRAM can speed commit processing and synchronous replication (HA)

 Explored storing the database in NVRAM

9/15/2016 DBMSS MEET NVRAM 36

