
Aditya Parameswaran
Assistant Professor
University of Illinois

http://data-people.cs.illinois.edu

Enabling Data Science
for the Majority

Many many contributors!

• PIs: Kevin Chang, Amol Deshpande, Karrie Karahalios, Aaron Elmore, Sam
Madden (Spanning Illinois, Chicago, MIT, UMD)

• PhD Students: Mangesh Bendre, Akash Das Sarma, Yihan Gao, Silu Huang, Doris
Lee, Stephen Macke, Sajjadur Rahman, Tarique Siddiqui, Tana Wattanawaroon,
Doris Xin, Liqi Xu

• MS Students: Ayush Jain, Vipul Venkataraman, Chao Wang, Ed Xue, Paul Zhou, …

• Many Undergrads!

2

It was the year 2013 …

3

Many of us (the database community)
were doing the exact same thing!

The “99%” of Data Analytics Needs

So far, focused on the data analytics needs of the 1%
• Companies w/ massive data, resources & know-how

Ignoring the 99%:
• scientists
• small business owners
• statistical analysts
• journalists
• consultants, …

Our research has been focused on
easing the burden of data analytics for the 99%

So what were their frustrations? 4

What about the Needs of the 99%?
The bottleneck is not one of scale…

but is actually the “humans-in-the-loop”

From “Big data and and its Technical Challenges”, CACM 2014

For big data to fully reach its potential, we need to consider scale not just for the system but

also from the perspective of humans. We have to make sure that the end points—humans—

can properly “absorb” the results of the analysis and not get lost in a sea of data.
5

Human
Time

Cognitive
Load

Analysis
Skills

Need of the hour:
Human-In-the-Loop Data Analytics Tools

HILDA tools:
• treat both humans and data

as first-class citizens
• reduce human labor
• minimize complexity

Interaction Data Mining

Databases

Taking the human
perspective into

account

Go beyond SQL

Scalability/Interactivity
is still important

Magic happens here

6

A Maslow’s Hierarchy for HILDA
Background: Maslow developed a theory for what motivates
individuals in 1943; highly influential

Complex Needs

Basic Needs

7

A Maslow’s Hierarchy for HILDA

8

Touch

Browse

Play

Understand

Share

Browse & Explore:

DataSpread is a spreadsheet-database hybrid:

Goal: Marrying the flexibility and ease of use of
spreadsheets with the scalability and power of databases

Enables the “99%” with large datasets but limited prog.
skills to open, touch, and examine their datasets

http://dataspread.github.io

9

[VLDB’15,VLDB’15,ICDE’16]

Play and View:

Zenvisage is effortless visual exploration tool.

Goal: “fast-forward” to visual patterns, trends, without
having analyst step through each one individually

Enables individuals to play with, and extract insights
from large datasets at a fraction of the time.

http://zenvisage.github.io

10

[VLDB’17, CIDR’17, VLDB’16,VLDB’15, VLDB’14 x 2]

Collaborate and Share:

OrpheusDB is a tool for managing dataset versions with a
database

Goal: building a versioned database system to reduce the burden
of recording datasets in various stages of analysis

Enables individuals to collaborate on data analysis, and share,
keep track of, and retrieve dataset versions.

http://orpheus-db.github.io

(also part of : a collab. analysis system w/ MIT & UMD)
datahub 11

[VLDB’17, SIGMOD’17, VLDB’16,VLDB’15 x 2, TAPP’15, CIDR’15]

This talk
About 10 minutes per system:

overview + architecture + one key technical challenge

Common theme: if you torture databases enough, you can get them to do

what you want!

12
Touch

Browse

Play

Understand

Share

13

Motivation

Most of the people doing ad-hoc data
manipulation and analysis use spreadsheets,

e.g., Excel

Why?

• Easy to use: direct manipulation

• Built-in visualization capabilities

• Flexible: schema-free

14

But Spreadsheets are Terrible!

– Slow

• single change è wait minutes on a 10,000 x 10 spreadsheet
• can’t even open a spreadsheet with >1M cells
• speed by itself can prevent analysis

– Tedious + not Powerful

• filters via copy-paste
• only FK joins via VLOOKUPs; others impossible
• even simple operations are cumbersome

– Brittle

• sharing excel sheets around, no collab/recovery
• using spreadsheets for collaboration is painful and error-prone

15

Let’s turn to Databases

Databases are:
• Slow Scalable
• Tedious + not Powerful Powerful and expressive (SQL)
• Brittle Collaboration, recovery, succinct

So why not use databases?
Well, for the same reason why spreadsheets are so useful:

• Easy to use Not easy to use
• Built-in visualization No built-in visualization
• Flexible Not flexible

16

Combining the benefits of
spreadsheets and databases

Spreadsheet as a frontend interface
Databases as a backend engine

Result: retain the benefits of both!

But it’s not that simple…

17

Different Ideologies

Due to this, the integration is not trivial…

Feature Databases Spreadsheets

Data Model Schema-first Dynamic/No Schema

Addressing Tuples with PK Cells, using Row/Col

Presentation Set-oriented, no
such notion

Notion of current
window, order

Modifications Must equal queries Can be done at any
granularity

Computation Query at a time Value at a time

18

First Problem: Representation
Q: how do we represent spreadsheet data?

Dense spreadsheets: represent as tables
(Row #, Col1 val, Col2 val, …)

Sparse spreadsheets: represent as triples
(Row #, Column #, Value)

19

First Problem: Representation
Q: how do we represent spreadsheet data?

Can we do even better than the two
extremes?Yes!

Carve out
dense areas è store as tables,
sparse areas è store as triples

20

First Problem: Representation

However, even if we only use “tables”, carving out
the ideal # partitions (min. storage, modif., access)
is NP-Hard
èReduction from min. edge-length partition of

rectilinear polygons

Thankfully, we have a way out…

21

Solution: Constrain the Problem

A new class of partitionings: recursive decomp.

A very natural class of partitionings! 22

Solution: Constrain the Problem

The optimal recursive
decomp. partitioning can be
found in PTIME using DP

è Still quadratic in # rows,
columns L

èMerge rows/columns with
identical signatures
~ the time for a single scan

23

One Sample Result

 0.1

 1

 10

Internet ClueWeb09 Enron Academic

Fo
rm

ul
ae

 A
cc

es
s

Ti
m

e
(m

s) ROM
RCV
Agg

24
Up to 30% reduction in storage, 40% reduction in eval time

Tables
Triples
Hybrid

Initial Progress and Architecture

Hopefully bring spreadsheets to the big data age!

Underlying Data Interface-Embedded
Queries

Interface-Aware
Indexes

Interface Query Processor

Interface Storage Manager

Spreadsheet
SQL

Spreadsheet
Formulae

New Interface
Algebra

…

Vanilla
SQL

Interface Transaction Manager

Other Applications Sally Bob Sue

25

1000000

Standard Data Visualization Recipe:

1. Load dataset into data viz tool
2. Start with a desired hypothesis/pattern
3. Select viz to be generated
4. See if it matches desired pattern
5. Repeat 3-4 until you find a match

27

Laborious and Time-consuming!

28

Key Issue:

Visualizations can be generated by varying
• data subsets
• visualized attributes

Too many visualizations to look at to find
desired visual patterns!

Broadly Applicable
• find keywords with

similar CTRs to a
specific one

• find solvents with
desired properties

• find aspects on
which two sets of
genes differ

• find supernovae with
specific patterns

29

Common theme: manual labor for finding desired
patterns to test hypotheses, derive insights

Key Insight : Automation

We can automate that!

Desiderata for automation:
• Expressive – specify what you want
• Interactive – interact with results, cater to non-programmers
• Scalable – get interesting results quickly

Enter Zenvisage:
(zen + envisage: to effortlessly visualize)

30

Overview

31

Zenvisage: Two Modes
• First Mode: Interactions, drawing, drag-and-drop

– Simple needs
– Starting point / context

• Second Mode: the Zenvisage Query Language (ZQL)
– Sophisticated needs
– Multiple steps

Can switch back and forth, as user needs evolve

Both modes developed after many discussions with potential users

32

ZQL: High Level Overview
ZQL is a viz exploration language

ØCaptures four key operations on viz collections

Compose Filter Compare Sort

Ø Incorporates data mining primitives

33

ZQL

Powerful; formally demonstrated “completeness”

ZQL: A Bird’s Eye View

34

Output spec

and identifiers

Composition of visualizations, often using

values from previous steps

Sorting, comparing, and

filtering visualizations

Name X Y Z Constraints Process

Example 1: Comparisons
Find the states where the soldprice trend is most
similar to (or most different from) the
soldpricepersqft trend.
è Comparing a pair of y-axes for different “z”

35

Fixed

Fixed

Varying

Z

0.9

0.1

WV

NY

CA

MI

NY

CA

MI

WV

MI

WV

0.7

0.8

Example 1: Comparisons

36

Example 2: Drill-downs

Find cities in NY where the trend for soldprice is
most different from (or most similar to) the overall

NY trend.

è Comparing across different granularities of “z”

37

Fixed

Fixed

Varying

Example 2: Drill-downs

38

Example 3: Explanations/Diffs

Find visualizations on which the states of CA and
NY are most different (or most similar).
è Comparing across different “x”, “y” for two “z”

39

Varying

Varying

Fixed

Example 3: Explanations/Diffs

40

ZQL Query Execution

Let’s use a relational database as a backend

Naïve translation approach:

For each line of ZQL:
Issue one SQL query for each combination of X, Y, Z;
Apply further processing on result

Often 1000s of SQL queries issued per ZQL query!
èwasteful, extremely high latency

41

SmartFuse: Intelligent Query Optimizer

NP-Hard!

42

ZQL Query

Speculation

Caching

Parallelism

Batching

Optimizer

DBMS

Process
Computation

f1

f2

p1

p2

f3

f4

p3

p4
f5

Graph Cons.
Sequential
ê(99.99%)

Grouped
ê(45%)
Parallel
ê(20%)

Speculation
ê(20%)

SmartFuse

User Study Takeaways (20 Participants)

43

Faster μ =115s, σ =51.6 vs. μ =172.5s, σ =50.5
More accurate μ =96.3%, σ =5.82 vs. μ =69.9%, σ =13.3

“In Tableau, there is no pattern searching. If I see some pattern in

Tableau, such as a decreasing pattern, and I want to see if any other

variable is decreasing in that month, I have to go one by one to find

this trend. But here I can find this through the query table.”

“you can just [edit] and draw to find out similar patterns. You'll

need to do a lot more through Matlab to do the same thing.”

“The obvious good thing is that you can do complicated queries,

and you don't have to write SQL queries... I can imagine a non-cs

student [doing] this.”

Real Usage Stories (1-year long dev)
• Confirmed gene expression

profiles in recent publication

• Unknown dip in an astro light
curve was caused due to
saturated image equipment

• Relationship between viscosity
and lithium solvation energy is
indep. of whether a solvent is a
high or low V solvent

44

Effortless Visual Exploration
of Large Datasets with

Ingredients
• Drag-and-drop and sketch based interactions

• to find specific patterns
• Sophisticated visual exploration language, ZQL

• to ask more elaborate questions
• Scalable visualization generation engine

• preprocess, batch and parallel eval. for interactive results
• Rapid pattern matching algorithms

• sampling-based techniques

45

46

Motivation

Collaborative data science is
ubiquitous
• Many users, many versions of the

same dataset stored at many
stages of analysis

• Status quo:
– Stored in a file system, relationships

unknown

Challenge: can we build a versioned
data store?

– Support efficient access, retrieval,
querying, and modification of
versions

47

Motivation: Starting Points

• VCS: Git/svn is inefficient and unsuitable
– Ordered semantics
– No data manipulation API
– No efficient multi-version queries
– Poor support for massive files

• DBMS: Relational databases don’t support
versioning, but are efficient and scalable

48

OrpheusDB: A Bolt-On Approach

• Retrieve the first version
that contains this tuple

• Find versions where the
average(salary) is greater
than 1000

• Find all pairs of versions
where over 100 new
tuples were added

• Show the history of the
tuple with record id 34.

49
49

Version Control
Commands

SQL
Commands

Unmodified DBMS

Versioning Layer

Client

Representing Versions in a DB: Take 1

50

badgeID age gender salary vid

0001 25 F 6500

0001 25 F 7500

0001 25 F 7500

0002 30 F 7500

0002 30 F 7500

0002 30 F 7500

0003 28 M 7000

0003 28 M 7000

0003 28 M 7000

0003 28 M 7000

0004 40 M 9000

0004 40 M 9000

0005 35 F 6500

0005 35 F 6500

0006 32 M 7000

0006 32 M 7000 v4

v4

v4

v4

v1

v2

a. Table with Versioned Records

v3

v3

v1

v4

v2

v1

v4

v2

v3

v3

Figure 1: Different Data Models

fundamental operation is checkout: this command materializes a
specific version of a CVD as a newly created regular table within
a relational database that ORPHEUSDB is connected to. The table
name is specified within the checkout command, as follows:

checkout -f [cvd] -v [vid] -t [table name]

Here, the version with id vid is materialized as a new table [table

name] within the database, to which standard SQL statements can
be issued, and which can later be added to the CVD as a new ver-
sion. The version from which this table was derived—i.e., vid—is
referred to as the parent version for the table.

Instead of materializing one version at a time, users can mate-
rialize multiple versions, by listing multiple vids in the command
above, essentially merging multiple versions to give a single table.
When merging, the records in the versions are added to the table in
the precedence order listed after -v: for any record being added, if
another record with the same primary key has already been added,
it is omitted from the table. This ensures that the eventual ma-
terialized table also respects the primary key property. There are
other conflict-resolution strategies, such as letting users resolve
conflicted records manually; for simplicity, we use a precedence
based approach. Internally, the checkout command records the ver-
sions that this table was derived from (i.e., those listed after -v),
along with the table name. Note that only the user who performed
the checkout operation is permitted access to the materialized ta-
ble, so they can perform any analysis and modification on this table
without interference from other users, only making these modifica-
tions visible when they add this table back as a new version to the
CVD using the commit operation described next.

The commit operation adds a new version to the CVD, by mak-
ing the local changes made by the user on their materialized table
visible to others. The commit command has the following format:

commit -t [table name] -m [commit message]

Note that the commit message does not need to specify the intended
CVD since ORPHEUSDB internally keeps a mapping between the
table name and the original CVD. In addition, since the versions
that the table was derived from originally during checkout are in-
ternally known to ORPHEUSDB, the table is added to the CVD as
a new version with those versions as parent versions. During the
commit operation, ORPHEUSDB compares the (possibly) modified
materialized table to the parent versions. If any records were added
or modified these records are treated as new records and added to
the CVD as such. (Recall that records are immutable within a CVD.)
Note that an alternative is to compare the new records with all of
the existing records in the CVD to check if any of the new records
have existed in any version in the past, which would take longer
to execute. At the same time, the latter approach would identify

records that were deleted then re-added later. Since we believe that
this is not a common case, we opt for the former approach, which
would only lead to modest additional storage at the cost of much
less computation during commit. We call this the no cross-version
diff implementation rule. Lastly, if the schema of the table that is
being committed is different from the CVD it derives from, then it
becomes part of a new CVD: a CVD has a single schema.

In order to support data science workflows, we additionally sup-
port the use of checkout and commit into and from csv (comma
separated value) files via slightly different flags: -c for csv instead
-t for table. The csv file can be processed in external tools and
programming languages such as Python or R, not requiring that
users perform the modifications and analysis using SQL. However,
during commit, the user is expected to also provide a schema file
via a -s flag so that ORPHEUSDB can make sure that the columns
are mapped in the correct manner. An alternative would be to use
schema inference tools, e.g., [26, 18], which could be seamlessly
incorporated if need be. Internally, ORPHEUSDB also tracks the
name of the csv file as being derived from one or more versions of
the CVD, just like it does with the materialized tables.

In addition to checkout and commit, ORPHEUSDB also supports
other commands, described very briefly here: (a) List: List the
contents of a version without materializing it. (b) Diff: A standard
differencing operation that compares two versions and outputs the
records in one but not the other. (c) Log: Display metadata related
to one or more versions, including parent and child versions, com-
mit times, and commit messages. (d) Optimize: As we will see in
the following, ORPHEUSDB can benefit from intelligent partition-
ing schemes (enabling other operations to access and process much
less data), as we will describe in Section 4. While these partition-
ing algorithms can be called periodically by the system, they can
also be invoked explicitly by the user.
SQL commands. ORPHEUSDB supports the use of SQL com-
mands on CVDs via the command line using the run command,
which either takes a SQL script as input or the SQL as a string.
Apart from materializing a version (or versions) as a table via the
checkout command and explicitly applying SQL operations on that
table, ORPHEUSDB also allows users to directly execute SQL queries
on a specific version, using special keywords VERSION, OF, and
CVD via syntax

SELECT ... FROM VERSION [vid] OF CVD [cvd], ...
without having to materialize it. Further, by using renaming, users
can operate directly on multiple versions (each as a relation) within
a single SQL statement, enabling operations such as joins across
multiple versions.

However, listing each version individually as described above
may be cumbersome for some types of queries that users wish to

badgeID age gender salary vlist

0001 25 F 6500

0001 25 F 7500

0002 30 F 7500

0003 28 M 7000

0004 40 M 9000

0005 35 F 6500

0006 32 M 7000

{v1}

{v1, v2, v4 }

{v1, v2, v3, v4 }

{v2, v4 }

{v3, v4 }

{v3, v4}

{v3, v4 }

b. Combined Table

Figure 1: Different Data Models

fundamental operation is checkout: this command materializes a
specific version of a CVD as a newly created regular table within
a relational database that ORPHEUSDB is connected to. The table
name is specified within the checkout command, as follows:

checkout -f [cvd] -v [vid] -t [table name]

Here, the version with id vid is materialized as a new table [table

name] within the database, to which standard SQL statements can
be issued, and which can later be added to the CVD as a new ver-
sion. The version from which this table was derived—i.e., vid—is
referred to as the parent version for the table.

Instead of materializing one version at a time, users can mate-
rialize multiple versions, by listing multiple vids in the command
above, essentially merging multiple versions to give a single table.
When merging, the records in the versions are added to the table in
the precedence order listed after -v: for any record being added, if
another record with the same primary key has already been added,
it is omitted from the table. This ensures that the eventual ma-
terialized table also respects the primary key property. There are
other conflict-resolution strategies, such as letting users resolve
conflicted records manually; for simplicity, we use a precedence
based approach. Internally, the checkout command records the ver-
sions that this table was derived from (i.e., those listed after -v),
along with the table name. Note that only the user who performed
the checkout operation is permitted access to the materialized ta-
ble, so they can perform any analysis and modification on this table
without interference from other users, only making these modifica-
tions visible when they add this table back as a new version to the
CVD using the commit operation described next.

The commit operation adds a new version to the CVD, by mak-
ing the local changes made by the user on their materialized table
visible to others. The commit command has the following format:

commit -t [table name] -m [commit message]

Note that the commit message does not need to specify the intended
CVD since ORPHEUSDB internally keeps a mapping between the
table name and the original CVD. In addition, since the versions
that the table was derived from originally during checkout are in-
ternally known to ORPHEUSDB, the table is added to the CVD as
a new version with those versions as parent versions. During the
commit operation, ORPHEUSDB compares the (possibly) modified
materialized table to the parent versions. If any records were added
or modified these records are treated as new records and added to
the CVD as such. (Recall that records are immutable within a CVD.)
Note that an alternative is to compare the new records with all of
the existing records in the CVD to check if any of the new records
have existed in any version in the past, which would take longer
to execute. At the same time, the latter approach would identify

records that were deleted then re-added later. Since we believe that
this is not a common case, we opt for the former approach, which
would only lead to modest additional storage at the cost of much
less computation during commit. We call this the no cross-version
diff implementation rule. Lastly, if the schema of the table that is
being committed is different from the CVD it derives from, then it
becomes part of a new CVD: a CVD has a single schema.

In order to support data science workflows, we additionally sup-
port the use of checkout and commit into and from csv (comma
separated value) files via slightly different flags: -c for csv instead
-t for table. The csv file can be processed in external tools and
programming languages such as Python or R, not requiring that
users perform the modifications and analysis using SQL. However,
during commit, the user is expected to also provide a schema file
via a -s flag so that ORPHEUSDB can make sure that the columns
are mapped in the correct manner. An alternative would be to use
schema inference tools, e.g., [26, 18], which could be seamlessly
incorporated if need be. Internally, ORPHEUSDB also tracks the
name of the csv file as being derived from one or more versions of
the CVD, just like it does with the materialized tables.

In addition to checkout and commit, ORPHEUSDB also supports
other commands, described very briefly here: (a) List: List the
contents of a version without materializing it. (b) Diff: A standard
differencing operation that compares two versions and outputs the
records in one but not the other. (c) Log: Display metadata related
to one or more versions, including parent and child versions, com-
mit times, and commit messages. (d) Optimize: As we will see in
the following, ORPHEUSDB can benefit from intelligent partition-
ing schemes (enabling other operations to access and process much
less data), as we will describe in Section 4. While these partition-
ing algorithms can be called periodically by the system, they can
also be invoked explicitly by the user.
SQL commands. ORPHEUSDB supports the use of SQL com-
mands on CVDs via the command line using the run command,
which either takes a SQL script as input or the SQL as a string.
Apart from materializing a version (or versions) as a table via the
checkout command and explicitly applying SQL operations on that
table, ORPHEUSDB also allows users to directly execute SQL queries
on a specific version, using special keywords VERSION, OF, and
CVD via syntax

SELECT ... FROM VERSION [vid] OF CVD [cvd], ...
without having to materialize it. Further, by using renaming, users
can operate directly on multiple versions (each as a relation) within
a single SQL statement, enabling operations such as joins across
multiple versions.

However, listing each version individually as described above
may be cumbersome for some types of queries that users wish to

Representing Versions in a DB: Take 2

51

badgeID age gender salary vlist

0001 25 F 6500

0001 25 F 7500

0002 30 F 7500

0003 28 M 7000

0004 40 M 9000

0005 35 F 6500

0006 32 M 7000

{v1}

{v1, v2, v4 }

{v1, v2, v3, v4 }

{v2, v4 }

{v3, v4 }

{v3, v4}

{v3, v4 }

b. Combined Table

Figure 1: Different Data Models

fundamental operation is checkout: this command materializes a
specific version of a CVD as a newly created regular table within
a relational database that ORPHEUSDB is connected to. The table
name is specified within the checkout command, as follows:

checkout -f [cvd] -v [vid] -t [table name]

Here, the version with id vid is materialized as a new table [table

name] within the database, to which standard SQL statements can
be issued, and which can later be added to the CVD as a new ver-
sion. The version from which this table was derived—i.e., vid—is
referred to as the parent version for the table.

Instead of materializing one version at a time, users can mate-
rialize multiple versions, by listing multiple vids in the command
above, essentially merging multiple versions to give a single table.
When merging, the records in the versions are added to the table in
the precedence order listed after -v: for any record being added, if
another record with the same primary key has already been added,
it is omitted from the table. This ensures that the eventual ma-
terialized table also respects the primary key property. There are
other conflict-resolution strategies, such as letting users resolve
conflicted records manually; for simplicity, we use a precedence
based approach. Internally, the checkout command records the ver-
sions that this table was derived from (i.e., those listed after -v),
along with the table name. Note that only the user who performed
the checkout operation is permitted access to the materialized ta-
ble, so they can perform any analysis and modification on this table
without interference from other users, only making these modifica-
tions visible when they add this table back as a new version to the
CVD using the commit operation described next.

The commit operation adds a new version to the CVD, by mak-
ing the local changes made by the user on their materialized table
visible to others. The commit command has the following format:

commit -t [table name] -m [commit message]

Note that the commit message does not need to specify the intended
CVD since ORPHEUSDB internally keeps a mapping between the
table name and the original CVD. In addition, since the versions
that the table was derived from originally during checkout are in-
ternally known to ORPHEUSDB, the table is added to the CVD as
a new version with those versions as parent versions. During the
commit operation, ORPHEUSDB compares the (possibly) modified
materialized table to the parent versions. If any records were added
or modified these records are treated as new records and added to
the CVD as such. (Recall that records are immutable within a CVD.)
Note that an alternative is to compare the new records with all of
the existing records in the CVD to check if any of the new records
have existed in any version in the past, which would take longer
to execute. At the same time, the latter approach would identify

records that were deleted then re-added later. Since we believe that
this is not a common case, we opt for the former approach, which
would only lead to modest additional storage at the cost of much
less computation during commit. We call this the no cross-version
diff implementation rule. Lastly, if the schema of the table that is
being committed is different from the CVD it derives from, then it
becomes part of a new CVD: a CVD has a single schema.

In order to support data science workflows, we additionally sup-
port the use of checkout and commit into and from csv (comma
separated value) files via slightly different flags: -c for csv instead
-t for table. The csv file can be processed in external tools and
programming languages such as Python or R, not requiring that
users perform the modifications and analysis using SQL. However,
during commit, the user is expected to also provide a schema file
via a -s flag so that ORPHEUSDB can make sure that the columns
are mapped in the correct manner. An alternative would be to use
schema inference tools, e.g., [26, 18], which could be seamlessly
incorporated if need be. Internally, ORPHEUSDB also tracks the
name of the csv file as being derived from one or more versions of
the CVD, just like it does with the materialized tables.

In addition to checkout and commit, ORPHEUSDB also supports
other commands, described very briefly here: (a) List: List the
contents of a version without materializing it. (b) Diff: A standard
differencing operation that compares two versions and outputs the
records in one but not the other. (c) Log: Display metadata related
to one or more versions, including parent and child versions, com-
mit times, and commit messages. (d) Optimize: As we will see in
the following, ORPHEUSDB can benefit from intelligent partition-
ing schemes (enabling other operations to access and process much
less data), as we will describe in Section 4. While these partition-
ing algorithms can be called periodically by the system, they can
also be invoked explicitly by the user.
SQL commands. ORPHEUSDB supports the use of SQL com-
mands on CVDs via the command line using the run command,
which either takes a SQL script as input or the SQL as a string.
Apart from materializing a version (or versions) as a table via the
checkout command and explicitly applying SQL operations on that
table, ORPHEUSDB also allows users to directly execute SQL queries
on a specific version, using special keywords VERSION, OF, and
CVD via syntax

SELECT ... FROM VERSION [vid] OF CVD [cvd], ...
without having to materialize it. Further, by using renaming, users
can operate directly on multiple versions (each as a relation) within
a single SQL statement, enabling operations such as joins across
multiple versions.

However, listing each version individually as described above
may be cumbersome for some types of queries that users wish to

rid vlist

r1

r7

r2

r3

r 4

r5

r6

{v1}

{v1, v2, v4 }

{v1, v2, v3, v4 }

{v2, v4}

{v3, v4}

{v3, v4}

{v3, v4}

vid rlist

{r1,r2,r3 }

{r2,r3,r 4}

{r3,r5,r6,r7 }

{r2,r3,r 4,r5,r6,r7}

v1

v2

v3

v4

c.ii. Split-by-rlist

c.i. Split-by-vlist

rid badgeID age gender salary

0001 25 F 6500

0002 30 F 7500

0003 28 M 7000

0004 40 M 9000

0001 25 F 7500

0005 35 F 6500

0006 32 M 7000

r1

r7

r2

r3

r 4

r5

r6

versioning attribute

Figure 1: Different Data Models

fundamental operation is checkout: this command materializes a
specific version of a CVD as a newly created regular table within
a relational database that ORPHEUSDB is connected to. The table
name is specified within the checkout command, as follows:

checkout -f [cvd] -v [vid] -t [table name]

Here, the version with id vid is materialized as a new table [table

name] within the database, to which standard SQL statements can
be issued, and which can later be added to the CVD as a new ver-
sion. The version from which this table was derived—i.e., vid—is
referred to as the parent version for the table.

Instead of materializing one version at a time, users can mate-
rialize multiple versions, by listing multiple vids in the command
above, essentially merging multiple versions to give a single table.
When merging, the records in the versions are added to the table in
the precedence order listed after -v: for any record being added, if
another record with the same primary key has already been added,
it is omitted from the table. This ensures that the eventual ma-
terialized table also respects the primary key property. There are
other conflict-resolution strategies, such as letting users resolve
conflicted records manually; for simplicity, we use a precedence
based approach. Internally, the checkout command records the ver-
sions that this table was derived from (i.e., those listed after -v),
along with the table name. Note that only the user who performed
the checkout operation is permitted access to the materialized ta-
ble, so they can perform any analysis and modification on this table
without interference from other users, only making these modifica-
tions visible when they add this table back as a new version to the
CVD using the commit operation described next.

The commit operation adds a new version to the CVD, by mak-
ing the local changes made by the user on their materialized table
visible to others. The commit command has the following format:

commit -t [table name] -m [commit message]

Note that the commit message does not need to specify the intended
CVD since ORPHEUSDB internally keeps a mapping between the
table name and the original CVD. In addition, since the versions
that the table was derived from originally during checkout are in-
ternally known to ORPHEUSDB, the table is added to the CVD as
a new version with those versions as parent versions. During the
commit operation, ORPHEUSDB compares the (possibly) modified
materialized table to the parent versions. If any records were added
or modified these records are treated as new records and added to
the CVD as such. (Recall that records are immutable within a CVD.)
Note that an alternative is to compare the new records with all of
the existing records in the CVD to check if any of the new records
have existed in any version in the past, which would take longer
to execute. At the same time, the latter approach would identify

records that were deleted then re-added later. Since we believe that
this is not a common case, we opt for the former approach, which
would only lead to modest additional storage at the cost of much
less computation during commit. We call this the no cross-version
diff implementation rule. Lastly, if the schema of the table that is
being committed is different from the CVD it derives from, then it
becomes part of a new CVD: a CVD has a single schema.

In order to support data science workflows, we additionally sup-
port the use of checkout and commit into and from csv (comma
separated value) files via slightly different flags: -c for csv instead
-t for table. The csv file can be processed in external tools and
programming languages such as Python or R, not requiring that
users perform the modifications and analysis using SQL. However,
during commit, the user is expected to also provide a schema file
via a -s flag so that ORPHEUSDB can make sure that the columns
are mapped in the correct manner. An alternative would be to use
schema inference tools, e.g., [26, 18], which could be seamlessly
incorporated if need be. Internally, ORPHEUSDB also tracks the
name of the csv file as being derived from one or more versions of
the CVD, just like it does with the materialized tables.

In addition to checkout and commit, ORPHEUSDB also supports
other commands, described very briefly here: (a) List: List the
contents of a version without materializing it. (b) Diff: A standard
differencing operation that compares two versions and outputs the
records in one but not the other. (c) Log: Display metadata related
to one or more versions, including parent and child versions, com-
mit times, and commit messages. (d) Optimize: As we will see in
the following, ORPHEUSDB can benefit from intelligent partition-
ing schemes (enabling other operations to access and process much
less data), as we will describe in Section 4. While these partition-
ing algorithms can be called periodically by the system, they can
also be invoked explicitly by the user.
SQL commands. ORPHEUSDB supports the use of SQL com-
mands on CVDs via the command line using the run command,
which either takes a SQL script as input or the SQL as a string.
Apart from materializing a version (or versions) as a table via the
checkout command and explicitly applying SQL operations on that
table, ORPHEUSDB also allows users to directly execute SQL queries
on a specific version, using special keywords VERSION, OF, and
CVD via syntax

SELECT ... FROM VERSION [vid] OF CVD [cvd], ...
without having to materialize it. Further, by using renaming, users
can operate directly on multiple versions (each as a relation) within
a single SQL statement, enabling operations such as joins across
multiple versions.

However, listing each version individually as described above
may be cumbersome for some types of queries that users wish to

Representing Versions in a DB: Take 3

Still slow… Apply partitioning!

52

v
1

r
1

v
2

v
3

v
4

r
2

r
3

r
4

r
5

r
6

r
7

Figure 5: Version-Record Bipartite Graph & Partitioning

E, where E is the set of edges in the original version-record bipar-
tite graph G. We further constrain each version in the CVD to exist
in only one partition, while each record can be duplicated across
multiple partitions. In this manner, we only need to access one par-
tition when checking out a version, consequently simplifying the
checkout process by reducing the overhead from accessing mul-
tiple partitions. (While we do not consider it in this paper, in a
distributed setting, it is even more important to ensure that as few
partitions are consulted during a checkout operation.) Thus, our
partition problem is equivalent to partitioning V , such that each
partition (P

k

) stores all of the records corresponding to all of the
versions assigned to that partition. Figure 5(b) illustrates a possible
partitioning strategy for Figure 5(a). Partition P1 contains version
v1 and v2, while partition P2 contains version v3 and v4. Note that
records r2, r3 and r4 are duplicated in P1 and P2, while each of
the other records are present in only one partition.

Metrics. We consider two criteria while partitioning: the storage
cost and the checkout cost. Recall that the cost for commit is fixed
and small—see Figure 3(b), so we only focus on the cost for check-
out.

Let us consider storage first. The overall storage involves the
cost of storing all of the partitions of the data table, and of the
versioning table. However, we observe that the versioning table
simply encodes the bipartite graph, and as a result, its cost is fixed,
no matter which partitioning scheme is used. Furthermore, since
all of the records in the data table have the same (fixed) number of
attributes, so instead of optimizing the actual storage, we simply
optimize for the number of records in the data table across all the
partitions. Thus, we define the storage cost, S, to be the following:

S =
KX

k=1

|R
k

| (4.1)

Next, we consider checkout. First, we note that the time taken
for checking out version i is proportional to the size of the data
table in the partition P

k

that contains version i, which in turn is
proportional to the number of records present in the that data table
partition. We theoretically and empirically justify this observation
in Appendix C.1. So we define the checkout cost of a version i,
C
i

, to be C
i

= |R
k

|, where v
i

2 V
k

. Then, the checkout cost,
denoted as C

avg

, which is what we optimize for, is defined to be
the average C

i

, i.e., C
avg

=
P

i Ci
n

. While we focus on the av-
erage case, which assumes that each version is checked out with
equal frequency—a reasonable assumption when we have no other
information about the workload—our algorithms generalize to the
weighted case, which we describe in Appendix B.2. On rewriting
the equation regarding C

avg

above, we get the following equation:

C
avg

=

P
K

k=1 |Vk

||R
k

|
n

(4.2)

Figure 6: Extreme Partitioning Schemes

The numerator is simply sum of the number of records in each par-
tition, multiplied by the number of versions in that partition, across
all partitions—this is the cost of checking out all of the versions.

Formal Problem. Note that our two metrics S and C
avg

interfere
with each other. If we want a small C

avg

, then we need more stor-
age, and if we want the storage to be small, then consequently, C

avg

will be large—we will discuss this again with examples in the next
section. Typically, the storage is under our control and we want to
optimize the checkout cost. Thus, our formal problem can be stated
as the following:

PROBLEM 1 (MINIMIZE CHECKOUT COST). Given a stor-
age threshold � and a version-record bipartite graph G = (V,R,E),
find a partitioning of G that minimizes C

avg

such that S  �.
We can show that the problem above is NP-HARD using a re-
duction from the 3-PARTITION problem, whose goal is to decide
whether a given set of n integers can be partitioned into n

3 sets with
equal sum. 3-PARTITION is known to be strongly NP-HARD, i.e.,
it is NP-HARD even when its numerical parameters are bounded
by a polynomial in the length of the input.

THEOREM 1. Problem 1 is NP-HARD.
The proof for this theorem can be found in Appendix A.

We now clarify one complication between our formalization so
far and our implementation. ORPHEUSDB uses the no cross-version
diff rule: that is, while performing a commit operation, ORPHEUSDB
does not compare the committed version against all of the ances-
tor versions, in order to keep that time bounded, and instead only
compares the version to its parents. Therefore, if some records
have been deleted and then re-added later, these records are ac-
tually identical, but would have been assigned different rids, and
are treated as different within the set R and the CVD. As it turns
out, Problem 1 is still NP-HARD when the space of instances of
version-record bipartite graphs are only those that can be conceiv-
ably generated when this rule is applied. For the rest of this section,
we will use the formalization with the no cross-version diff rule in
place, since that relates more closely to practice.

4.2 Partitioning Algorithm
Before we introduce our algorithm titled LYRESPLIT3, we first

describe two observations—these observations will help us formal-
ize our algorithm’s guarantees. Given a version-record bipartite
graph G = (V,R,E), there are two extreme cases for partitioning.
At one extreme, we can minimize the checkout cost by storing each
version in the CVD as one partition. In this scheme, there are in total
K = |V | = n partitions. The storage cost is S =

P
n

k=1 |Rk

| =
|E| and the checkout cost is C

avg

= 1
n

P
n

k=1 (|V
k

||R
k

|) = |E|
|V | .

At another extreme, we can minimize the storage by storing all ver-
sions in one single partition. Then, the storage cost is S = |R| and
C
avg

= |R|. We illustrate these two schemes in Figure 6, and list
them as formal observations below:

OBSERVATION 1. Given a bipartite graph G = (V,R,E), the
checkout cost C

avg

is minimized by storing each version as one
separate partition: C

avg

= |E|
|V | .

3A lyre was the musical instrument of choice for Orpheus.

v
1

r
1

v
2

v
3

v
4

r
2

r
3

r
4

r
5

r
6

r
7

Ρ
1

Ρ
2

Figure 5: Version-Record Bipartite Graph & Partitioning

E, where E is the set of edges in the original version-record bipar-
tite graph G. We further constrain each version in the CVD to exist
in only one partition, while each record can be duplicated across
multiple partitions. In this manner, we only need to access one par-
tition when checking out a version, consequently simplifying the
checkout process by reducing the overhead from accessing mul-
tiple partitions. (While we do not consider it in this paper, in a
distributed setting, it is even more important to ensure that as few
partitions are consulted during a checkout operation.) Thus, our
partition problem is equivalent to partitioning V , such that each
partition (P

k

) stores all of the records corresponding to all of the
versions assigned to that partition. Figure 5(b) illustrates a possible
partitioning strategy for Figure 5(a). Partition P1 contains version
v1 and v2, while partition P2 contains version v3 and v4. Note that
records r2, r3 and r4 are duplicated in P1 and P2, while each of
the other records are present in only one partition.

Metrics. We consider two criteria while partitioning: the storage
cost and the checkout cost. Recall that the cost for commit is fixed
and small—see Figure 3(b), so we only focus on the cost for check-
out.

Let us consider storage first. The overall storage involves the
cost of storing all of the partitions of the data table, and of the
versioning table. However, we observe that the versioning table
simply encodes the bipartite graph, and as a result, its cost is fixed,
no matter which partitioning scheme is used. Furthermore, since
all of the records in the data table have the same (fixed) number of
attributes, so instead of optimizing the actual storage, we simply
optimize for the number of records in the data table across all the
partitions. Thus, we define the storage cost, S, to be the following:

S =
KX

k=1

|R
k

| (4.1)

Next, we consider checkout. First, we note that the time taken
for checking out version i is proportional to the size of the data
table in the partition P

k

that contains version i, which in turn is
proportional to the number of records present in the that data table
partition. We theoretically and empirically justify this observation
in Appendix C.1. So we define the checkout cost of a version i,
C
i

, to be C
i

= |R
k

|, where v
i

2 V
k

. Then, the checkout cost,
denoted as C

avg

, which is what we optimize for, is defined to be
the average C

i

, i.e., C
avg

=
P

i Ci
n

. While we focus on the av-
erage case, which assumes that each version is checked out with
equal frequency—a reasonable assumption when we have no other
information about the workload—our algorithms generalize to the
weighted case, which we describe in Appendix B.2. On rewriting
the equation regarding C

avg

above, we get the following equation:

C
avg

=

P
K

k=1 |Vk

||R
k

|
n

(4.2)

Figure 6: Extreme Partitioning Schemes

The numerator is simply sum of the number of records in each par-
tition, multiplied by the number of versions in that partition, across
all partitions—this is the cost of checking out all of the versions.

Formal Problem. Note that our two metrics S and C
avg

interfere
with each other. If we want a small C

avg

, then we need more stor-
age, and if we want the storage to be small, then consequently, C

avg

will be large—we will discuss this again with examples in the next
section. Typically, the storage is under our control and we want to
optimize the checkout cost. Thus, our formal problem can be stated
as the following:

PROBLEM 1 (MINIMIZE CHECKOUT COST). Given a stor-
age threshold � and a version-record bipartite graph G = (V,R,E),
find a partitioning of G that minimizes C

avg

such that S  �.
We can show that the problem above is NP-HARD using a re-
duction from the 3-PARTITION problem, whose goal is to decide
whether a given set of n integers can be partitioned into n

3 sets with
equal sum. 3-PARTITION is known to be strongly NP-HARD, i.e.,
it is NP-HARD even when its numerical parameters are bounded
by a polynomial in the length of the input.

THEOREM 1. Problem 1 is NP-HARD.
The proof for this theorem can be found in Appendix A.

We now clarify one complication between our formalization so
far and our implementation. ORPHEUSDB uses the no cross-version
diff rule: that is, while performing a commit operation, ORPHEUSDB
does not compare the committed version against all of the ances-
tor versions, in order to keep that time bounded, and instead only
compares the version to its parents. Therefore, if some records
have been deleted and then re-added later, these records are ac-
tually identical, but would have been assigned different rids, and
are treated as different within the set R and the CVD. As it turns
out, Problem 1 is still NP-HARD when the space of instances of
version-record bipartite graphs are only those that can be conceiv-
ably generated when this rule is applied. For the rest of this section,
we will use the formalization with the no cross-version diff rule in
place, since that relates more closely to practice.

4.2 Partitioning Algorithm
Before we introduce our algorithm titled LYRESPLIT3, we first

describe two observations—these observations will help us formal-
ize our algorithm’s guarantees. Given a version-record bipartite
graph G = (V,R,E), there are two extreme cases for partitioning.
At one extreme, we can minimize the checkout cost by storing each
version in the CVD as one partition. In this scheme, there are in total
K = |V | = n partitions. The storage cost is S =

P
n

k=1 |Rk

| =
|E| and the checkout cost is C

avg

= 1
n

P
n

k=1 (|V
k

||R
k

|) = |E|
|V | .

At another extreme, we can minimize the storage by storing all ver-
sions in one single partition. Then, the storage cost is S = |R| and
C
avg

= |R|. We illustrate these two schemes in Figure 6, and list
them as formal observations below:

OBSERVATION 1. Given a bipartite graph G = (V,R,E), the
checkout cost C

avg

is minimized by storing each version as one
separate partition: C

avg

= |E|
|V | .

3A lyre was the musical instrument of choice for Orpheus.

Optimally partitioning minimizing storage and retrieval: NP-Hard!

OrpheusDB

54

Some Takeaways…

1. Many underserved communities: why only focus
on the needs of the 1%?

2. Working with consumers from the get go: keeps
you honest; avoid the non-problems

3. The “Human-in-the-loop” is crucial: the interfaces
are as important as the algorithms

55

Summary: Takeaways

orpheus-db.github.io

datamaran.github.io

My website: http://data-people.cs.illinois.edu
Twitter: @adityagp 56

Touch

Browse

Play

Understand

Share

gestalt-ml.github.io

zenvisage.github.io

dataspread.github.io

