Enabling Data Science for the Majority

Aditya Parameswaran Assistant Professor University of Illinois

http://data-people.cs.illinois.edu

Many many contributors!

- PIs: Kevin Chang, Amol Deshpande, Karrie Karahalios, Aaron Elmore, Sam Madden (Spanning Illinois, Chicago, MIT, UMD)
- PhD Students: Mangesh Bendre, Akash Das Sarma, Yihan Gao, Silu Huang, Doris Lee, Stephen Macke, Sajjadur Rahman, Tarique Siddiqui, Tana Wattanawaroon, Doris Xin, Liqi Xu
- MS Students: Ayush Jain, Vipul Venkataraman, Chao Wang, Ed Xue, Paul Zhou, ...
- Many Undergrads!

It was the year 2013 ...

Many of us (the database community) were doing the exact same thing!

WALL STREET JOURNAL

The "99%" of Data Analytics Needs

So far, focused on the data analytics needs of the 1%

Companies w/ massive data, resources & know-how

Ignoring the 99%:

- scientists
- small business owners
- statistical analysts
- journalists
- consultants, ...

Our research has been focused on easing the burden of data analytics for the 99%

So what were their frustrations?

What about the Needs of the 99%?

The bottleneck is not one of **scale...**

but is actually the "humans-in-the-loop"

From "Big data and and its Technical Challenges", CACM 2014

For big data to fully reach its potential, we need to consider scale not just for the system but also from the perspective of humans. We have to make sure that the end points—humans— can properly "absorb" the results of the analysis and not get lost in a sea of data.

Need of the hour: Human-In-the-Loop Data Analytics Tools

A Maslow's Hierarchy for HILDA

Background: Maslow developed a theory for what motivates individuals in 1943; highly influential

A Maslow's Hierarchy for HILDA

DataSpread is a **spreadsheet-database hybrid**:

Goal: Marrying the flexibility and ease of use of spreadsheets with the scalability and power of databases

Enables the "99%" with large datasets but limited prog. skills to open, touch, and examine their datasets

http://dataspread.github.io

[VLDB'15, VLDB'15, ICDE'16]

9

Play and View:

Zenvisage is effortless visual exploration tool.

Goal: "fast-forward" to visual patterns, trends, without having analyst step through each one individually

Enables individuals to play with, and extract insights from large datasets at a fraction of the time.

http://zenvisage.github.io

[VLDB'17, CIDR'17, VLDB'16, VLDB'15, VLDB'14 × 2]

Collaborate and Share: Collaborate and Share:

OrpheusDB is a tool for managing dataset versions with a database

Goal: building a versioned database system to reduce the burden of recording datasets in various stages of analysis

Enables individuals to collaborate on data analysis, and share, keep track of, and retrieve dataset versions.

http://orpheus-db.github.io

(also part of) (block and all also part of) (block and all all all also part of) (block datahub

[VLDB'17, SIGMOD'17, VLDB'16, VLDB'15 X 2, TAPP'15, CIDR'15]

This talk

About 10 minutes per system:

overview + architecture + one key technical challenge

Common theme: if you torture databases enough, you can get them to do what you want!

Motivation

Most of the people doing ad-hoc data manipulation and analysis use spreadsheets, e.g., Excel

Why?

- Easy to use: direct manipulation
- Built-in visualization capabilities
- *Flexible*: schema-free

But Spreadsheets are Terrible!

- Slow
 - single change → wait minutes on a 10,000 x 10 spreadsheet
 - can't even open a spreadsheet with >1M cells
 - speed by itself can prevent analysis
- Tedious + not Powerful
 - filters via copy-paste
 - only FK joins via VLOOKUPs; others impossible
 - even simple operations are cumbersome
- Brittle
 - sharing excel sheets around, no collab/recovery
 - using spreadsheets for collaboration is painful and error-prone

Let's turn to Databases

Databases are:

Scalable

- *Tedious + not Powerful* Powerful and expressive (SQL)
- Brittle Collaboration, recovery, succinct

So why not use databases?

Well, for the same reason why spreadsheets are so useful:

- Easy to use Not easy to use
- Built-in visualization
 No built-in visualization
- Flexible
 Not flexible

Combining the benefits of spreadsheets and databases

Spreadsheet as a frontend interface Databases as a backend engine

Result: retain the benefits of both!

But it's not that simple...

Different Ideologies

Feature	Databases	Spreadsheets		
Data Model	Schema-first	Dynamic/No Schema		
Addressing	Tuples with PK	Cells, using Row/Col		
Presentation	Set-oriented, no such notion	Notion of current window, order		
Modifications	Must equal queries	Can be done at any granularity		
Computation	Query at a time	Value at a time		

Due to this, the integration is not trivial...

First Problem: Representation Q: how do we represent spreadsheet data?

		-				
1	snp	chromoso	position	minor	major	
2	rs1208247	1	740857	т	С	
3	rs3094315	1	752566	G	Α	
4	rs3131972	1	752721	Α	G	
5	rs3115860	1	753406	с	Α	
6	rs3131969	1	754182	Α	G	
7	rs1048488	1	760912	G	Α	
8	rs3115850	1	761147	А	G	
9	rs2286139	1	761732	С	т	
10	rs1256203	1	768448	A	G	
11	rs1212481	1	776546	G	Α	
12	rs2980319	1	777122	Α	т	
13	rs4040617	1	779322	G	Α	
14	rs2980300	1	785989	Α	G	
15	rs1124077	1	798959	Α	G	
16	rs4970383	1	838555	Α	С	
17	rs4475691	1	846808	Α	G	
18	rs2860985	1	851190	Α	G	
19	rs1806509	1	853954	с	Α	
20	rs7537756	1	854250	G	Α	
21	rs1330298	1	861808	A	G	
22	rs4040604	1	863124	с	Α	
23	rs2340587	1	864938	G	Α	
24	rs2857669	1	870645	G	Α	
25	rs1110052	1	873558	С	Α	
26	rs7523549	1	879317	Α	G	
27	rs3748592	1	880238	Α	G	
28	rs3748593	1	880390	Α	С	
29	rs2272756	1	882033	Α	G	
30	rs2340582	1	882803	Α	G	
31	rs4246503	1	884815	Α	G	
32	rs3748594	1	886384	Α	G	
33	rs3748595	1	887560	Α	С	
34	rs3748597	1	888659	Т	С	
35	rs1330310	1	891945	Α	G	
36	rs1330301	1	894573	G	Α	
37	rs2870521	1	900505	С	G	
38	rs3935066	1	900730	G	Α	
39	rs6696281	1	903104	Α	G	
40	rs2839128	1	904165	Α	G	
41	rs2869570	1	904355	Α	G	
42	rs2856232	1	904628	Δ	G	

	A	В	С	D	E	F	G	н	
1	bob								
2									
3		sally						steven	-
4		_	_	james					_
5			_				jennifer		_
6			charles						
7					dan				
8									-
9						alice			
10									-
11									-
12					rick				
13		_							-
16									
15									-
17									-
19									
19									
20									
21									-
22				Г					
23		_							
24					Do		cnr	and	shaata, rapracant ac tablac
25					De	ise	spr	eaus	sneets: represent as tables
26									
27					(Rc		4 C (<u>011 v</u>	
28					(110		', -		
29									
30									
31									
32					Sna	arce	snr	read	sheets, represent as triples
33					Jhe	1130	- spi	Cuu	sheets. represent as triples
34							цС		$ = \frac{H}{2} \sqrt{2} \left[\frac{1}{2} + \frac{1}{2} \right] $
35					(KC	W 7	Ŧ, C(olun	nn #, value)
36			_				-		1
37									
38									
39				-					10
40				L		_			

First Problem: Representation Q: how do we represent spreadsheet data?

	Α	В	C I	DE	F	G	Н	I	J	К	L	М	N	0	Р	Q	R	S	Т	
1	snp c	hromoso	position mino	or majoi					snp	chromoso	position									1
2	rs1208247	1	740857 T	С		dasas			rs1208247	1	740857									1
3	rs3094315	1	752566 G	A	-				rs3094315	1	752566									
4	rs3131972	1	752721 A	G					rs3131972	1	752721									1
5	rs3115860	1	753406 C	A					rs3115860	1	753406									1
6	rs3131969	1	754182 A	G					rs3131969	1	754182									1
7	rs1048488	1	760912 G	A					rs1048488	1	760912									4
8	rs3115850	1	761147 A	G					rs3115850	1	761147									4
9	rs2286139	1	761732 C	Т					rs2286139	1	761732							1 .	-	
10	rs1256203	1	768448 A	G					rs1256203	1	768448	_	- C a	n w	le d	O P	ven	het	ter	than the two
11	rs1212481	1	776546 G	A					rs1212481	1	776546					υc	vCII	DCU		
12	rs2980319	1	777122 A	Т					rs2980319	1	777122					21	1			
13	rs4040617	1	779322 G	A					rs4040617	1	779322		l ex	trei	mes	5? YO	es!			
14	rs2980300	1	785989 A	G					rs2980300	1	785989									
15	rs1124077	1	798959 A	G					rs1124077	1	798959		-							
16	rs4970383	1	838555 A	С					rs4970383	1	838555	_	_							
17	rs4475691	1	846808 A	G					rs4475691	1	846808	_	_							
18	rs2860985	1	851190 A	G					rs2860985	1	851190			rva		t				
19	rs1806509	1	853954 C	A					rs1806509	1	853954	_			. 00	L				
20	rs7537756	1	854250 G	A					rs7537756	1	854250	_	- I							
21	rs1330298	1	861808 A	G					rs1330298	1	861808	_	de	ense	e are	eas	7	stor	'e as	stables.
22	rs4040604	1	863124 C	A					rs4040604	1	863124	_								
23	rs2340587	1	864938 G	A					rs2340587	1	864938	_		- re		~ ~ ~		cto		c triples
24	rs2857669	1	870645 G	A					rs2857669	1	870645	_	SP	dise	e dí	eds	7	SLO	le d	s unpies
25	rs1110052	1	873558 C	A					rs1110052	1	873558	_								•
26	rs7523549	1	879317 A	G					rs7523549	1	879317		-							
27	rs3748592	1	880238 A	G					rs3748592	1	880238		_							
28	rs3748593	1	880390 A	С					rs3748593	1	880390	-								
29	rs2272756	1	882033 A	G					rs2272756	1	882033	-								H
30	rs2340582	1	882803 A	G					rs2340582	1	882803									
31	rs4246503	1	884815 A	G					rs4246503	1	884815									
32	rs3748594	1	886384 A	G					rs3748594	1	886384									H
33	rs3748595	1	887560 A	C					rs3748595	1	887560									
25	153748597	1	801045 4	C					153746597	1	001045									
26	151550510	1	091945 A	0					151550510	1	091943									
37	rc2970E21	1	000505 C	A					151550501	1	000505									
38	rc3035066	1	900730 6	0					rc3035066	1	900303									
30	rc6606281	1	903104 A	G					rs6606281	1	903104									
40	rc2920129	1	90/165 A	G					rc2020120	1	90/165									
41	rc2860570	1	90/355 A	G					rs2869570	1	90/355									20
42	rc2856222	1	904628 A	G					rc2856222	1	904555									
72	132030232	1	J04020 A	G					132030232	1	50-+020						1			

First Problem: Representation

However, even if we only use "tables", carving out the ideal # partitions (min. storage, modif., access) is NP-Hard

Reduction from min. edge-length partition of rectilinear polygons

Thankfully, we have a way out...

Solution: Constrain the Problem

A new class of partitionings: recursive decomp.

Solution: Constrain the Problem

The optimal recursive decomp. partitioning can be found in PTIME using DP

→ Still quadratic in # rows, columns ⊗

 Merge rows/columns with identical signatures
 ~ the time for a single scan

One Sample Result

Up to 30% reduction in storage, 40% reduction in eval time

Initial Progress and Architecture

File ▼ Quick Sta	Edit ▼ View ▼ Ir art Guide	nsert ▼ Hel	p ▼ DataS _l File	oread 0.3.2 unsaved R	egis	ster 💄 m	Logout aangesh
	🗸 🗙 🛅 🛛 Calibr	i 🗸	11 -	в <i>I</i> <u>U</u>	42	- <u>A</u>	۵
File '	Edit View	Insert	Help 🔻	DataSprea	ad	0.3.2	Logout
Ouic	k Start Guide			File ur	Isa	ved Regis	ster 🌲 mangesh
						j.	
	🖺 = 🔉 🛅	Calibri	•	.1 ▼ B		I U S	• <u>A</u>
·		Merge	& Center 👻	+ 🗮 🛨 🛄	Ŧ	🛒 🔻 🕺	ŗ ⊻⊞
A	3 🔻 f(x)) =SQL("s	elect name,	sum(total) fr	om	invoice na	tural join supp 🔒
		group by	name")				
_	٨	B		 D	F	F	G
1	invoice id	sunn id	auant	total		sunn id	name
2	A001	4563.0	100.0	1000.0		4563.0	UNICOM
3	A002	4532.0	180.0	1800.0		4532.0	PARAMOUNT
4	A003	4563.0	80.0	800.0			
5	A004	4563.0	120.0	1200.0			
6							Top Supplier
7	Supplier Totals						[1 x 1]
8	[2 x 2]						UNICOM
9	Name	Total					
10	PARAMOUNT	1800.0					
11	UNICOM	3000.0					
12		nort 🤇	Sheet2				
	Invoicere		JICCL2				N 2

Hopefully bring spreadsheets to the big data age!25

Broadly Applicable

Carnegie Mellon University Scott Institute for Energy Innovation

- find keywords with similar CTRs to a specific one
- find solvents with desired properties
- find aspects on which two sets of genes differ
- find supernovae with specific patterns

Common theme: **manual labor** for finding desired patterns to test hypotheses, derive insights

Key Insight : Automation

We can automate that!

Desiderata for automation:

- Expressive specify what you want
- Interactive interact with results, cater to non-programmers
- Scalable get interesting results quickly

Enter Zenvisage: (zen + envisage: to effortlessly visualize)

Overview

Zenvisage: Two Modes

- First Mode: Interactions, drawing, drag-and-drop
 - Simple needs
 - Starting point / context

- Second Mode: the Zenvisage Query Language (ZQL)
 - Sophisticated needs
 - Multiple steps

x	Y	z	Constraints	Process	
•					4
			0		

Can switch back and forth, as user needs evolve

Both modes developed after many discussions with potential users

ZQL: High Level Overview

ZQL is a viz exploration language

Captures four key operations on viz collections
 Compose Filter Compare Sort Incorporates data mining primitives

Powerful; formally demonstrated "completeness"

ZQL: A Bird's Eye View

Name X Y Z Constraints Process

Example 1: Comparisons

Find the states where the *soldprice* trend is most similar to (or most different from) the *soldpricepersqft* trend.

Comparing a pair of y-axes for different "z"

Example 1: Comparisons

Example 2: Drill-downs

Find *cities in NY* where the trend for *soldprice* is most different from (or most similar to) the *overall NY trend*.

Comparing across different granularities of "z"

Example 2: Drill-downs

Example 3: Explanations/Diffs

Find visualizations on which the *states of CA* and *NY* are most different (or most similar).

Comparing across different "x", "y" for two "z"

Example 3: Explanations/Diffs

ZQL Query Execution

Let's use a relational database as a backend

Naïve translation approach:

For each line of ZQL: Issue one SQL query for each combination of X, Y, Z; Apply further processing on result

Often 1000s of SQL queries issued per ZQL query! → wasteful, extremely high latency

SmartFuse: Intelligent Query Optimizer

User Study Takeaways (20 Participants)

Faster $\mu = 115s$, $\sigma = 51.6$ vs. $\mu = 172.5s$, $\sigma = 50.5$ More accurate $\mu = 96.3\%$, $\sigma = 5.82$ vs. $\mu = 69.9\%$, $\sigma = 13.3$

"In Tableau, there is no pattern searching. If I see some pattern in Tableau, such as a decreasing pattern, and I want to see if any other variable is decreasing in that month, I **have to go one by one** to find this trend. But here I can find this through the query table."

"you can just [edit] and draw to find out similar patterns. You'll **need to do a lot more through Matlab** to do the same thing."

"The obvious good thing is that you **can do complicated queries**, and you **don't have to write SQL** queries... I can imagine a non-cs student [doing] this."

Real Usage Stories (1-year long dev)

Carnegie Mellon University Scott Institute for Energy Innovation

- Confirmed gene expression profiles in recent publication
- Unknown dip in an astro light curve was caused due to saturated image equipment
- Relationship between viscosity and lithium solvation energy is indep. of whether a solvent is a high or low V solvent

Effortless Visual Exploration **zenvisage** of Large Datasets with

Ingredients

- Drag-and-drop and sketch based interactions
 - to find specific patterns
- Sophisticated visual exploration language, ZQL
 - to ask more elaborate questions
- Scalable visualization generation engine
 - preprocess, batch and parallel eval. for interactive results
- Rapid pattern matching algorithms
 - sampling-based techniques

Motivation

Collaborative data science is ubiquitous

- Many users, many versions of the same dataset stored at many stages of analysis
- Status quo:
 - Stored in a file system, relationships unknown

Challenge: can we build a versioned data store?

 Support efficient access, retrieval, querying, and modification of versions

Motivation: Starting Points

- VCS: Git/svn is inefficient and unsuitable
 - Ordered semantics
 - No data manipulation API
 - No efficient multi-version queries
 - Poor support for massive files
- **DBMS:** Relational databases don't support versioning, but are efficient and scalable

OrpheusDB: A Bolt-On Approach

- Retrieve the first version that contains this tuple
- Find versions where the average(salary) is greater than 1000
- Find all pairs of versions where over 100 new tuples were added
- Show the history of the tuple with record id 34.

Representing Versions in a DB: Take 1

badgeID	age	gender	salary	vid
0001	25	F	6500	<i>v</i> ₁
0001	25	F	7500	<i>v</i> ₃
0001	25	F	7500	v_4
0002	30	F	7500	<i>v</i> ₁
0002	30	F	7500	<i>v</i> ₂
0002	30	F	7500	v_4
0003	28	М	7000	<i>v</i> ₁
0003	28	М	7000	<i>v</i> ₂
0003	28	М	7000	<i>v</i> ₃
0003	28	М	7000	v_4
0004	40	М	9000	<i>v</i> ₂
0004	40	М	9000	<i>v</i> ₄
0005	35	F	6500	<i>v</i> ₃
0005	35	F	6500	<i>v</i> ₄
0006	32	М	7000	<i>v</i> ₃
0006	32	М	7000	<i>v</i> ₄

_	
	/

badgeID	age	gender	salary	vlist
0001	25	F	6500	$\{\mathbf{v}_1\}$
0001	25	F	7500	$\{v_{3}, v_{4}\}$
0002	30	F	7500	$\{\boldsymbol{v}_{1},\boldsymbol{v}_{2},\boldsymbol{v}_{4}\}$
0003	28	М	7000	$\{v_{1,}v_{2,}v_{3,}v_{4}\}$
0004	40	М	9000	$\{\boldsymbol{v}_{2},\boldsymbol{v}_{4}\}$
0005	35	F	6500	$\{\boldsymbol{v}_{3},\boldsymbol{v}_{4}\}$
0006	32	М	7000	$\{v_3, v_4\}$

Representing Versions in a DB: Take 2

badgeID	age	gender	salary	vlist
0001	25	F	6500	$\{\mathbf{v}_1\}$
0001	25	F	7500	$\{\mathbf{v}_{3},\mathbf{v}_{4}\}$
0002	30	F	7500	$\{\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_4\}$
0003	28	М	7000	$\{v_{1,}v_{2,}v_{3,}v_{4}\}$
0004	40	М	9000	$\{\boldsymbol{v}_{2},\boldsymbol{v}_{4}\}$
0005	35	F	6500	$\{\boldsymbol{v}_{3},\boldsymbol{v}_{4}\}$
0006	32	М	7000	$\{v_3, v_4\}$
1				

	rid	badgeID	age	gender	salary	
	r_1	0001	25	F	6500	
	r_2	0002	30	F	7500	
	r ₃	0003	28	М	7000	
	r ₄	0004	40	М	9000	
	r_5	0001	25	F	7500	
	r ₆	0005	35	F	6500	1
\searrow	<i>r</i> ₇	0006	32	М	7000	$ \mathbf{M}_{\mathbf{f}} $

	rid	vlist
	r_1	$\{\mathbf{v}_1\}$
	r_2	$\{v_{1}, v_{2}, v_{4}\}$
	r ₃	$\{v_{1,}v_{2,}v_{3,}v_{4}\}$
	r ₄	$\{\mathbf{v}_{2},\mathbf{v}_{4}\}$
	r_5	$\{\mathbf{v}_{3},\mathbf{v}_{4}\}$
	r ₆	$\{\mathbf{v}_{3},\mathbf{v}_{4}\}$
X	<i>r</i> ₇	$\{\mathbf{v}_{3},\mathbf{v}_{4}\}$
) / (

	vid	rlist
	<i>v</i> ₁	$\{r_{1}, r_{2}, r_{3}\}$
	<i>v</i> ₂	$\{r_{2}, r_{3}, r_{4}\}$
Ч	<i>v</i> ₃	$\{r_{3,}r_{5,}r_{6,}r_{7}\}$
	<i>v</i> ₄	$\{r_{2}, r_{3}, r_{4}, r_{5}, r_{6}, r_{7}\}$

Representing Versions in a DB: Take 3

Still slow... Apply partitioning!

Optimally partitioning minimizing storage and retrieval: NP-Hard!

OrpheusDB

OrpheusDB		Dashboard Settings Profile
Collaborative	Command Input	Version Visualization
(CVDs)	Please enter either the SQL or the version control command b	vid = 1
-	FROM VERSION 1,2 OF CVD Interaction WHERE coexpression > 80 LIMIT 50;	vid = 2 vid = 3
Brivete Files	Submit Explain	vid = 4 $vid = 5$ $vid = 6$ $vid = 9$
- Interaction_v1.csv	Output Results	vid = 8 vid = 7
- Interaction_v4.csv	neighbor cooccu co protein1 protein2 hood rrence ssi	expre on vid = 13 vid = 16
Private Tables	ENSP273047 ENSP261890 0 53 83	
- Interaction_tmp	ENSP273047 ENSP261890 0 53 83	vid = 14vid = 15
-	ENSP300413 ENSP274242 426 0 164	4 Version Graph of CVD:
	ENSP300413 ENSP274242 426 0 164	4
	ENSP300413 ENSP274242 426 0 164	4
	ENSP300413 ENSP274242 426 0 164	4 Checkout Query Explore View Diff Info
	ENSP309334 ENSP346022 0 227 975	5

Some Takeaways...

- 1. Many underserved communities: why only focus on the needs of the 1%?
- 2. Working with consumers from the get go: keeps you honest; avoid the non-problems
- 3. The "Human-in-the-loop" is crucial: the interfaces are as important as the algorithms

Summary: Takeaways

My website: <u>http://data-people.cs.illinois.edu</u> Twitter: @adityagp