
Speeding Up Set Intersections in
Graph Algorithms using SIMD

Instructions
--Lei Zou

Joint work with Shuo Han and Jeffrey Xu Yu
@SIGMOD 2018

2

Graph is everywhere:

Social Network Citation Network Road Network

Protein Network Knowledge Graph Internet

Background

Background
A graph is a set of nodes and edges that connect them:

Edge

Node

Background
How to represent a large sparse graph ?

• Adjacency Matrix

• Adjacency List

Outline

• Motivation
• Related Work
• Data Structure (Base and State Representation)
• Algorithm (QFilter, SIMD-based)
• Graph Re-ordering
• Experiments

Motivation

• Set Intersection
Problem Definition: Given two sets A and B,
how to compute ! ∩ # efficiently ?

Motivation

• Why Set-Intersection is important in graph
algorithms/systems.

Common Computing Pattern in Graph
Algorithms.
• Triangle Counting [1]
• Clique Detection [2]
• Subgraph Isomorphism [3,4]
• Graph Simulation [5]
……

Important Component in Graph System
• EmptyHead [6]
• gStore [7]
……

Motivation

• Triangle Counting
Given a graph G, returns the number of triangles involved in the graph.

!

"

#$(!)

#$(") • Compute a descending order of node degree ', such
that if ' ! < ' " then)*+ ! ≤)*+ " ;

• For ! ∈ . do:
• #$! = " ∈ # ! | ' ! < ' "

• For !, " ∈ 2 and ' ! < ' " do:
• 3 = 4567897:6 #$! , #$ "
• Δ = Δ ∪ !, " ×3

Motivation

• Maximal Clique Detection
Given a graph G, returns all maximal cliques in the graph.

!

" # = Ø

v
!′ = ! ∪ (

v
") = " ∩ + (#′ = Ø

• ,-./0-1.23ℎ 5, 7, 8 :
• If 7 = ∅ and 8 = ∅:

• Report 5 as a maximal clique
• For : ∈ 7 do:

• 5) = 5 ∪ :
• 7) = <+=>!?>@= 7,A :
• 8) = <+=>!?>@= 8,A :
• Call ,-./0-1.23ℎ 5′, 7′, 8′
• 7 = 7 ∖ {:}
• 8 = 8 ∪ {:}

Motivation

• Subgraph Isomorphism
Neighbor Connection Pruning

A

B C

A

B C

A

!"
C

!# !$

%" %#

%$ %&

%'

Step 1: Finding Candidate Matching
nodes (only considering vertex labels)
(!" = %#,%'
(!# = {%$}
(!$ = {%", %&}

Step 2: Neighbor Connection Pruning
Considering edge (!", !$)

/ %" = %$ ∩ (!" = 1

=> (!$ = {%", %&}

G
Q

Used in ULLMAN [8],VF2 [3] and
TurboISO [4] algorithms

Motivation

Profiling of 3 Representative Graph Algorithms

Set Inter.
Calls

Set Inter.
Time

Total
Time

Prop.

Triangle Counting 21274216 9.9s 10.5s 94.3%
Maximal Clique 254503699 120.7s 164.1s 73.6%
Subgraph Matching 120928579 31.5s 54.1s 58.2%

Set Intersection plays an important role!

Let us see some experiment results

Motivation

• Why Set-Intersection Important ?

Clique Detection

Triangle Counting/Listing

Subgraph Matching

!
Clustering Coefficient

Triangle−based Community DetecCon (- − /0122)
……

!
Maximal Commong Subgraph

Dense Subgraph DetecCon (- − >?@A1B)
……

!
SPARQL Query

Social Group Finding
……

Speeding up set-intersection will result in accelerating a bunch of graph
computing tasks.

set-
intersection

Primitive Operations

Related Work
• SIMD Instructions
SIMD: Single instruction multiple data.

C-intrinsics Meanings
_mm_load_si128() Load consecutive 128 bit piece of data from

memory that aligned on a 16-byte boundary to a
SIMD register.

_mm_store_si128() Write the content of a register to aligned memory.

_mm_shuffle_epi32(a,b) Shuffle 32-bit integers in a according to the control
mask in b.

_mm_and_si128(a,b) Compute bitwise AND of 128 bits data in a and b.

!"

#
!"

!#!$!%

" % $
!# !% !$

_mm_shuffle_epi32(a,b)

Related Work

C-intrinsics Meanings
_mm_andnot_si128(a,b) Compute the bitwise NOT of 128 bits data in a

and then AND with b.

_mm_cmpeq_epi32(a,b) Compares the four 32-bit integers in a and b for
equality.

_mm_movemask_ps() Create masks for the most significant bit of each
32-bit integer

_mm_movemask_epi8() Creat masks for the most significant bit of each
8-bit integer

• SIMD Instructions (continued)
SIMD: Single instruction multiple data.

!

"
#

$# %

$ &
' # '

_mm_cmpeq_epi32(a,b)

Related Work
• Pairwise Set-Intersection
Merge-based Solution

of comparisons:
Best case: Min $% , $'
Worst case: |$%| + |$'|

Related Work
• Pairwise Set-Intersection
SIMD Merge-based Solution [10, 11, 12]

Step 1: (LOAD)
Load two blocks of elements from
two arrays into SIMD registers (using
_mm_load_si128()).

Step 2: (COMPARE)
Make all-pairs comparison between two
blocks in parallel.
• Employing SIMD compare instructions

(_mm_compeq_epi32())
• Pack the common values together by

shuffle instructions (_mm_shuffle_epi32())
• Store them in the result array

(_mm_store_si128())

Step 3: (FORWARD)
Compare the last elements of the two
blocks. If equal, move forward both
pointers; otherwise, only advance the
pointer of the smaller one to the next
block.

Related Work
• Pairwise Set-Intersection
SIMD Merge-based Solution (Shuffling [11])

Step 2: (COMPARE)
Make all-pairs comparison between two
blocks in parallel.

1 2 3 4

1 3 4 5

1 2 3 4

5 1 3 4

Loop 1:

Loop 2:

! " " "

" " ! !

Loop 3:

Loop 4: 1 " ! ! Final mask.

1 3 4set_c

Related Work
• Pairwise Set-Intersection
Merge-based solution does not work well when two set sizes are significantly
different (e.g., !"!# ≥ 32 '(!#

!"
≥ 32) .

Binary Search-based method works, e.g. Galloping [9]

Outline

• Motivation
• Related Work
• Our work
– Data Structure (Base and State Representation)
– Algorithm (QFilter, SIMD-based)
– Graph Re-ordering

• Experiments

Base and State Representation

! "#$ "" "% &% &' '!&('!&)'!&#Neighbor
Set

Our Algorithm-QFilter
• INPUTS: two sets in BSR format
!"#, %"# ; !"', %"(

0 1 2 259

…0100 ….1001 ….0111 …1101

0 2 3 256

…0011 …1110 …0110 …1011

!"#
%"#

!"(
%"(

2

…0110

!")
%")

• OUTPUT: the intersection set !"), %")

���� ��
�
�	��� ��
����

22

Overview
Load 4 base values

No match?

Filter by byte-checking

Load 4 state chunks

Align and match

Gather results and write
back

Advance array pointers

Main Stage 1:
Compare the base values from the
two sets. We quickly filter out the
redundant comparisons by byte-
checking using SIMD instructions.

Main Stage 2:
For the matched base values, we
execute the bitwise AND operation
on the corresponding state chunks.

���	��� 	��

23

Considering the least significant byte of each base value.

If there exists multi-hit cases, it must be false positive . We need to check
the next byte.
!!! BUT we claim “multi-hit” case rarely happens (both theoretical
analysis and experiment results) (less than 1.9%)
The filter step stops when there are only no-hit or one-hit.

0000 0100 0010Filter vector

�	���� ���
 ���

24

0000 0100 0010

Filter vector

�	���� ���
 ���

25

Output

���� ��
�
�	��� ��
����
Intra-chunk and Inter-chunk Parallelism

• Intra-chunk Parallelism:
• Each chunk in BSR represents several elements by an integer.

In this way, we can process multiple elements within a chunk.
• Inter-chunk Parallelism:
• We can process multiple chunks simultaneously by SIMD

instructions.

Intra-chunk Parallelism + Inter-chunk Parallelism à More than 10x speedup!

����-��
�	������������
����

����

27

Quantitative Analysis

A match that includes at least one “multi-hit” is called “multi-match”.

����-��
�	������������
����

����

28

Quantitative Analysis

Definition. (Selectivity) : Given two sets !" and !#, the selectivity is defined as
follows:

%&'&()*+*), = |!/|
012(!" , !#)

Let 5 to be the probability of successful matching for one comparison as a random
variable.
If the intersection algorithm takes 6 comparisons in total, the probability 5 is

5 = !/
6

Since 16 ; 012 <=
> , <?> ≤ 6 ≤16; <=

> + <?
>

Thus, 5 ≤ 0.25 ; %&'&()*+*), ≤ 0.25

����-��
�	������������
����

����

29

Quantitative Analysis

In the byte-checking filter step, suppose that the range of base values is up
to w bits; each turn we take b bits to check.
Note that we have no false negatives.

Positive Negative
True ! 2# − 2#%&

2# − 1 (1 − !)

False 2#%& − 1
2# − 1 (1 − !) 0

After checking the least significant byte, we have the following :

* +,%-./ = *123 ;
* ,+5%-./ = 4×*128 × * 19 + * ;9 ;

* <=>/.%-./ = 1 − * +,%-./ − * ,+5%-./ ;

? @ABCD%@ECFG

= H − ? IJ%GDC + ? JIK%GDC
L

����-��
�	������������
����

����

30

Quantitative Analysis

Typically, in practice, !"#"$%&'&%(< 0.1,
&. ". . < 0.025 ;

2 345678396:; < 1.90%
2 >?8396:; > 62.6 %

Fewer CPU cycles than other
methods

High pruning power of our Qfilter
byte-checking approach.

����-��
�	������������
����

����

31

Let us see some experiments

Outline

• Motivation
• Related Work
• Our work
– Data Structure (Base and State Representation)
– Algorithm (QFilter, SIMD-based)
– Graph Re-ordering

• Experiments

�
���� ��
��
	
�
The Node Ordering Matters

! " # !’ % #′
… … … …

'('), '+, ',, '-) '. '/, '-, '(, ')
') '(, ',, '-) ') '/, '., '(
… … … …

27 state chunks in total 17 state chunks in total

(chunk size = 8)

�
���� ��
��
	
�
BSR Compactness Score

• !:		the state chunk size of BSR;
• $: the node ID assignment function, $. & → {0, 1, … , & − 1};
• /01 23 (or /04 23): the number of state chunks of 23’s out-neighbors (or in-neighbors);
• 51 23 (or 54 23): the biased weight to estimate the accessing frequency of 23’s out-

neighbors (or in-neighbors).

6 7,!, $, 5 = 9
:;∈=

51 23 ⋅ /01 23 + 54 23 ⋅ /04 23

�
���� ��
��
	
�
Definition of the Graph Reordering Problem

• Given a graph !(#, %), where each node '(∈ # is assigned with the
ID * in advance, a state chunk size +. The graph reordering problem
is to find the node ID assignment function ,. # → {0, 1, … , # −
1}, which minimizes the compactness score 5 !,+, ,, 6 .

�
���� ��
��
	
�
Hardness

• The graph reordering problem is NP-complete.

• we propose an approximate algorithm that can find a better
ordering to enhance the intra-chunk parallelism.

�
������	�� �
���

Average Speedups on 9 Graph Orderings and
3 Graph Algorithms under Different Settings

(a) Triangle Counting (b) Maximal Clique (c) Subgraph
Matching

�
������	�� �
���

Number of All-pairs Comparisons vs. Compactness Score

(a) Triangle Counting (b) Maximal Clique (c) Subgraph
Matching

�
������	�� �
���

Comparing with state-of-the-arts

VS. Roaring [13], that is reported as the fastest set intersection against other compression
techniques (reported in SIGMOD 2017 experimental study paper [14])

�
������	�� �
���

Comparing with state-of-the-arts

VS. EmptyHeaded, in TODS 2017 [6]

EmptyHeaded:
• A high-level relational engine for graph processing achieves performance

comparable to that of low-level engines.

Using worst-case optimal
join algorithm [15, 16]

set-
intersection

���
	����������

41

SIMD Set Intersection Algorithms:

• Directly use some off-the-shelf algorithms:
• SIMDShuffling [11]
• V1, V3
• SIMDGalloping [17]
• Bmiss [18]

���
	����������

42

SIMD Set Intersection Algorithms:

Automatically switch between SIMDShuffling and SIMDGalloping
at the run time by considering the skew ratio (!1 / !2)

�
������	�� �
���

Comparing with state-of-the-arts

VS. EmptyHeaded, in TODS 2017 [9]

44

Conclusions
• BSR Layout is used to represent node ID sets, which is

tailored for accelerating set intersection using SIMD
instructions

• A byte-checking strategy is proposed in our Qfliter
algorithm, with some theoretical analysis.

• We propose a new graph ordering algorithm to find a
better graph ordering to save the compactness of BSR
representation.

• Qfilter+SIMD+GRO does improve the graph performance
greatly (3-10x speedup)

References
• [1] Shumo Chu and James Cheng. 2011. Triangle listing in massive networks and its

applications. In SIGKDD. ACM, 672–680.
• [2] Coen Bron and Joep Kerbosch. 1973. Finding all cliques of an undirected graph

(algorithm 457). Commun. ACM 16, 9 (1973), 575–577.
• [3] Luigi Pietro Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004.

A (sub) graph isomorphism algorithm for matching large graphs. TPAMI 26, 10
• (2004), 1367–1372
• [4] Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. 2013. Turbo iso: towards

ultrafast and robust subgraph isomorphism search in large graph databases. In
SIGMOD. ACM, 337–348.

• [5] Shuai Ma, Yang Cao, Wenfei Fan, Jinpeng Huai, Tianyu Wo: Strong simulation:
Capturing topology in graph pattern matching. ACM Trans. Database Syst. 39(1):
4:1-4:46 (2014)

• [6] Christopher R Aberger, Andrew Lamb, Susan Tu, Andres Nötzli, Kunle Olukotun,
and Christopher Ré. 2017. Emptyheaded: A relational engine for graph processing.
TODS 42, 4 (2017), 20.

References
• [7] Lei Zou, M. Tamer Özsu, Lei Chen, Xuchuan Shen, Ruizhe Huang,

Dongyan Zhao: gStore: a graph-based SPARQL query engine. VLDB J. 23(4):
565-590 (2014)

• [8] Julian R. Ullmann: An Algorithm for Subgraph Isomorphism.J. ACM
23(1): 31-42 (1976)

• [9] Erik D Demaine, Alejandro López-Ortiz, and J Ian Munro. Adaptive set
intersections, unions, and differences. In SODA (2000)

• [10] Hiroshi Inoue, Moriyoshi Ohara, and Kenjiro Taura. 2014. Faster set
intersection with simd instructions by reducing branch mispredictions.
PVLDB 8, 3 (2014), 293–304.

• [11] Ilya Katsov. 2012. Fast intersection of sorted lists using SSE
instructions. (2012). https://highlyscalable.wordpress.com/2012/06/05/

• fast-intersection-sorted-lists-sse/
• [12] Benjamin Schlegel, Thomas Willhalm, and Wolfgang Lehner. 2011.

Fast sorted-Set intersection using SIMD instructions. In ADMS@VLDB. 1–8.

• [13] Daniel Lemire, Owen Kaser, Nathan Kurz, Luca Deri, Chris O’Hara, François
Saint-Jacques, and Gregory Ssi-Yan-Kai. 2017. Roaring bitmaps: Implementation of
an optimized software library. SPE (2017).

• [14] JianguoWang, Chunbin Lin, Yannis Papakonstantinou, and Steven Swanson.
2017. An Experimental Study of Bitmap Compression vs. Inverted List Compression.
In SIGMOD. ACM, 993–1008.

• [15] Hung Q. Ngo, Ely Porat, Christopher Ré, Atri Rudra: Worst-case Optimal Join
Algorithms. J. ACM 65(3): 16:1-16:40 (2018)

• [16] Hung Q. Ngo, Christopher Ré, Atri Rudra: Skew strikes back: new
developments in the theory of join algorithms. SIGMOD Record 42(4): 5-16 (2013)

• [17] Daniel Lemire, Leonid Boytsov, and Nathan Kurz. 2016. SIMD compression and
the intersection of sorted integers. SPE 46, 6 (2016), 723–749.

• [18] Hiroshi Inoue, Moriyoshi Ohara, and Kenjiro Taura. 2014. Faster set
intersection with simd instructions by reducing branch mispredictions. PVLDB 8, 3
(2014), 293–304.

Thanks

