Speeding Up Set Intersections in
Graph Algorithms using SIMD
Instructions
--Leil Zou

Joint work with Shuo Han and Jeffrey Xu Yu
@SIGMOD 2018

Background

Graph is everywhere:

/ Oxford

| = Swindon
= = | - Bristol
e g—
Southampton

Citation Network Road Network

London

® o
The Knowledge Graph
e L

) - o

Wh22’ Protein Phosphatase
/Rris3 Type 2A Complex

Protein Network Knowledge Graph Internet

Background

A graph is a set of nodes and edges that connect them:

Background

How to represent a large sparse graph ?

* Adjacency Matrix $¢

* Adjacency List v

Outline

Motivation

Related Work

Data Structure (Base and State Representation)
Algorithm (QFilter, SIMD-based)

Graph Re-ordering

Experiments

Motivation

* Set Intersection

Problem Definition: Given two sets A and B,
how to compute A N B efficiently ?

seta: [1]2]3]4[5][7]9]11] -

| // /[

set b: [1[3[a]5[7][8]9]10]

Motivation

 Why Set-Intersection is important in graph
algorithms/systems.

Common Computing Pattern in Graph
Algorithms.

* Triangle Counting [1]

e Cligue Detection [2]

e Subgraph Isomorphism [3,4]

e Graph Simulation [5]

Important Component in Graph System
* EmptyHead [6]
e gStore [7]

Motivation

* Triangle Counting

Given a graph G, returns the number of triangles involved in the graph.

u Compute a descending order of node degree R, such
""" that if R(v) < R(u) then Deg(v) < Deg(u);
* Forv eV do:
- © Nt = {u€ N@) | R(w) < Rw))
. e For(v,u) € Eand R(v) < R(u) do:
71 « [=INTERSECT(N*(v),N*(u))
e A=AU{(v,u)xI}

Motivation

 Maximal Clique Detection

Given a graph G, returns all maximal cliques in the graph.
R

X=0 |+ BroKerbosch(R,P,X):
e fP=@Qand X = 0:
* Report R as a maximal clique
e Forv € Pdo:
« R'=Ru{v}
» P’ =INTERSECT(P,N(v))
» X' =INTERSECT(X,N(v))
« Call BroKerbosch(R',P', X")
* P=P\{v}
e X=X Uu{v}

P =PnN(v) X =0

Motivation

e Subgraph Isomorphism

Neighbor Connection Pruning
Step 1: Finding Candidate Matching

Used in ULLMAN [8],VF2 [3] and nodes (only considering vertex labels)
TurbolSO [4] algorithms C(uy) = {v,vs}

C(uz) = {vs}

C(uz) = {vy, v4}

Step 2: Neighbor Connection Pruning
Considering edge (uq, u3)

Nw.) ={vz}nC(uy) = ¢

=>((u3) = {7&»17;}

Motivation

Let us see some experiment results

Profiling of 3 Representative Graph Algorithms

Triangle Counting 21274216 9.9s 10.5s 94.3%
Maximal Clique 254503699 120.7s 164.1s | 73.6%
Subgraph Matching 120928579 31.5s 54.1s 58.2%

Set Intersection plays an important role!

Motivation

* Why Set-Intersection Important ?

Primitive Operations

Clustering Coefficient
Triangle Counting/Listing |Z>[5

set-
intersection

: : Maximal Commong Subgraph
IZ>< Cligue Detection IZ>[8 grap

_ SPARQL Query
Subgraph Matching &) 5o cial Group Finding

\

Speeding up set-intersection will result in accelerating a bunch of graph
computing tasks.

Triangle-based Community Detection (K — truss)

Dense Subgraph Detection (K — clique)

Related Work

* SIMD Instructions
SIMD: Single instruction multiple data.

_mm_load_si128() Load consecutive 128 bit piece of data from
memory that aligned on a 16-byte boundary to a
SIMD register.

_mm_store_si128() Write the content of a register to aligned memory.
_mm_shuffle_epi32(a,b) Shuffle 32-bit integers in a according to the control
mask in b.
_mm_and_sil128(a,b) Compute bitwise AND of 128 bits data in a and b.
a, (a; a, |as _mm_shuffle_epi32(a,b)

bal a, asz Qg

112 (3|0

Related Work

e SIMD Instructions (continued)
SIMD: Single instruction multiple data.

_mm_andnot_si128(a,b) Compute the bitwise NOT of 128 bits data in a
and then AND with b.
_mm_cmpeq_epi32(a,b) Compares the four 32-bit integers in a and b for
equality.
_mm_movemask_ps() Create masks for the most significant bit of each
32-bit integer
_mm_movemask_epi8() Creat masks for the most significant bit of each
8-bit integer
1 |3 _mm_cmpeq_epi32(a,b)

I—>1010

Related Work

 Pairwise Set-Intersection

Merge-based Solution

Algorithm 1: Merge-based Intersection (non-SIMD)

1 inti=0,]=0,sizec=0;

2 while i < size_a && j < size_b do
3 if ser_afi] == set_b[j] then

4 set_c[size_c ++] = set_ali] ;

I++; j++:
6 else if ser_afi] < set_b[j] then i++ ;
7 else j++:

8 return setr_c, size_c .

of comparisons:
Best case: Min(|S,|, |Sp])
Worst case: |S,| + |Sp]

Related Work

 Pairwise Set-Intersection

SIMD Merge-based Solution [10, 11, 12]
.. Step 1: (LOAD)

set.a: | 1121314151 7191|111- Load two blocks of elements from
all-pairs W@(\ﬁ_él """""""" two arrays into SIMD registers (using
comparison | /[o> AN Nake _mm_load_si128()).
setb: |1 (3141517 18]9]10]-
""""""""" J
Step 2: (COMPARE) Step 3: (FORWARD)

Make all-pairs comparison between two

Compare the last elements of the two
blocks in parallel.

_ _ _ blocks. If equal, move forward both
* Employing SIMD compare instructions pointers; otherwise, only advance the

(_mm_compeq_epi32()) pointer of the smaller one to the next
* Pack the common values together by block.

shuffle instructions (_mm_shuffle _epi32())
e Store them in the result array
(_mm_store si128())

Related Work

e Pairwise Set-Intersection Step 2: (COMPARE)

SIMD Merge-based Solution (Shuffling [11]) Make all-pairs comparison between two
-- blocks in parallel.

set_a: [1 2!3 4[5][7]09 1]~
all-pairs "'\ IR rmmnnrrae
comparison | [< 3 _\l+:4

set b: | 13145178910 setc 1 3 4
Loop 1: O
1 2 3 4
1 B3 04 05 1 0 0 0
Loop 2
———— 0 0 1 1
5 1 3 4

Loop 4: 1 0 1 1 Final mask.

Related Work

 Pairwise Set-Intersection

Merge-based solution does not work well when two set sizes are significantly
: S S
different (e.g., Sal > 32 or 5ol > 32).
|Sb| |Sa|

Binary Search-based method works, e.g. Galloping [9]

Algorithm 2: Galloping Intersection (non-SIMD)

// suppose size_a <K size_b

i =10;7=0:; size_c=0;

while i < size_a && j < size_b do

sequential search the smallest r (r = 292122),
such that set_b[j + r] > set_ali] ;

4 binary search the smallest 7’ in range [r/2,r] such
that set_b[j + '] > set_ali] ;

if set_ai] == set_b[j + '] then

‘ set_c[size_c + +] = set_ali] ;

i+ -+ jt ="

return set_c, size_c .

[P T ST

== - N]

Outline

e Our work

m) — Data Structure (Base and State Representation)
— Algorithm (QFilter, SIMD-based)
— Graph Re-ordering

* Experiments

Base and State Representation

base values:

state chunks:

’w 32

0

2

3 256

...0011

1110 |.

...01101....1011

4

bitmap:|....0011: 0....0

i....11100110 0....0... 0 ..1011

f all-zero chu? f f

Neighbor
Set O

65

66

67

97

98 B192|B193B195

Our Algorithm-QFilter
* INPUTS: two sets in BSR format
(bvg, svq); (b, SV)

2y o 2 | 259

SVq ...01001001 ...0111 ..1101

e o |2 | 3 | 2%

SVp ...0011 ..1110 ...0110 ..1011

* QUTPUT: the intersection set (bv,, sv,)
po, [

SV, ...0110

Our Algorithm - QFilter

Overview

Load 4 base values

¥

Filter by byte-checking

<o match?

Load 4 state chunks

v

Align and match

u WrI

hi-l(

Advance array pointers

|<.

Main Stage 1:

Compare the base values from the
two sets. We quickly filter out the
redundant comparisons by byte-
checking using SIMD instructions.

Main Stage 2:

For the matched base values, we
execute the bitwise AND operation
on the corresponding state chunks.

22

Filter Step

Considering the least significant byte of each base value.

bv a bv b

1. gather and
scatter bytes

filter (16 bits) I 3. shift result to a 16-bit value
1001/0000J0100J0010

multi-hit no-hit one-hit

If there exists multi-hit cases, it must be false positive . We need to check
the next byte.
I BUT we claim “multi-hit” case rarely happens (both theoretical

analysis and experiment results) (less than 1.9%)
The filter step stops when there are only no-hit or one-hit.

Filter vector 1000 0000 0100 0010

23

Align and match

bv a

sv_a
0 1 | 2 |25 0100 | ...1001 | ...0111 | ...1101
bv_mask
2. compare 4 1...1/0..0]1..1]0...0
base pairs 0000 RN1000Y ...0110] ...0100 . bitwise-AND
sv_c state chunks
0 RIY 2 | 0011 R ..1110] ...0110
1 el / 1. align chunks __ 4 A~ _~—
0 2 3 | 256 ..0011]...1110...0110 | ...1011
bv b i sv b

1000 0000 0100 0010

Filter vector

Align and match

2. bitwise-AND non_empty_mask

bv_mask
1...1]0..0]1...1]0...0
3. shlft mask to
by a 4-bit value
| 2] 259

WOMO
TT(# biis)

V_C

(0.0 | 11 [1.2] 1.1

1. check all-zero
sV _C state chunks

0000 [...1000] ...0110] ...0100
4. gather valid

...0110

SV_C

Output

25

Our Algorithm - QFilter

Intra-chunk and Inter-chunk Parallelism

* Intra-chunk Parallelism:
* Each chunk in BSR represents several elements by an integer.
In this way, we can process multiple elements within a chunk.
* Inter-chunk Parallelism:
* We can process multiple chunks simultaneously by SIMD
instructions.

Intra-chunk Parallelism + Inter-chunk Parallelism - More than 10x speedup!

Quantitative Analysis
Why “multi-match” rarely happens ?

A match that includes at least one “multi-hit” is called “multi-match”.

bv_a bv b : l
1. gather and ' <= '
scatter bytes _g T - 2
2. cpare cach yt pair o
filter (16 bits) 3. shift result to a 16-bit value
1001]0000[0100[0010 @
multi-hit no-hit one-hit

Quantitative Analysis
Why “multi-match” rarely happens ?

Definition. (Selectivity) : Given two sets S, and §;, the selectivity is defined as

follows:
|Se|

MIN(|Sal, 1S51)

selectivity =

Let p to be the probability of successful matching for one comparison as a random

variable.
If the intersection algorithm takes C comparisons in total, the probability p is

|Scl
C

since 16 - MIN (22, 521) < ¢ <6 (B2l 4 2]}

Thus, p < 0.25 - selectivity < 0.25

28

Quantitative Analysis
Why “multi-match” rarely happens ?

In the byte-checking filter step, suppose that the range of base values is up
to w bits; each turn we take b bits to check.

Note that we have no false negatives.

After checking the least significant byte, we have the following :

Positive Negative
True p 2W — pw-b)
w_q1 (1-p)
False 2w=b _1
ow _ 1 (1-p) 0
P{no—hit} = P’#N;
P {multi—-match}

Pioro iy = 4XP3 X(P P :
{one—nhit} inX(Pirpy + Pirpy) :> =1~ (Pno-nity + P {one—hit})4

P{multi—hit} =1- P{no—hit} - P{one—hit};

Quantitative Analysis
Why “multi-match” rarely happens ?

A ‘_ P multi_match """ P no match‘ T Shufﬂlng Hiqralnter "
5 —BMiss —QFilter |8
75% [. 12 S
2 5 O
= -
§50% 8 83
3 3
A~ i3
25% 4 — &
>
10% a8
1% b= ‘ ‘ - T T T T T
0.01 0.05 0.10 0.15 0.20 0.25 0.01 0.05 0.10 0.15 0.20 0.25
p €1[0,0.25] p €[0,0.25]
Fewer CPU cycles than other
. . . o methods
Typically, in practice, selectivity < 0.1, ﬂ
l.e.p < 0.025;

P P 1.9009
Iﬁmul“ matCh}><62 69((’)//0 |:> High pruning power of our Qfilter
{no—match} 70 byte-checking approach.

Let us see some experiments
Why “multi-match” rarely happens ?

TC MC SM
skew_ratio < 1/32 | 5.04% | 47.72% | 25.37%
skew_ratio > 1/32 | 94.96% | 52.28% | 74.63%
selectivity < 0.3 91.75% | 95.60% | 96.68%
“No-Match” Cases 36.54% | 26.07% | 43.53%
“One-Match” Cases | 58.06% | 26.10% | 30.41%
“Multi-Match” Cases | 0.35% 0.12% 0.69%

Table 4: Proportions of different cases

31

Outline

e Our work

— Data Structure (Base and State Representation)
— Algorithm (QFilter, SIMD-based)
m)> — Graph Re-ordering

* Experiments

Graph Reordering
The Node Ordering Matters

vio(Vi4) viivi2) via(vs) viz(ve) via(va)

vo(vi3) i) va(v) v%(cvﬁfmk size = 8)

U3 V4, Ve, Vg, V14 v, Vo, V1, V3, Uy

Vs V3,Vg, V14 Va Vo, V2, V3

27 state chunks in total 17 state chunks in total

Graph Reordering

BSR Compactness Score

SGw.f,0) =) o) [N +a () - [N (w))

ViEV

w. the state chunk size of BSR;

f:the node ID assignment function, f.V — {0,1, ..., |[V| =1}

|1V5(vi)|(or |N;(vl-)|): the number of state chunks of v;’s out-neighbors (or in-neighbors);
ap(v;) (or a;(v;)): the biased weight to estimate the accessing frequency of v;’s out-
neighbors (or in-neighbors).

Graph Reordering

Definition of the Graph Reordering Problem

* Givenagraph G(V,E), where each node v; € V is assigned with the
ID i in advance, a state chunk size w. The graph reordering problem
is to find the node ID assignment function f.V — {0,1, ..., |V| —

1}, which minimizes the compactness score S(G,w, f,).

Graph Reordering

Hardness

* The graph reordering problem is NP-complete.

* we propose an approximate algorithm that can find a better
ordering to enhance the intra-chunk parallelism.

N

1.0)

(95}

8]

Speedup (Origin

Evaluation Results

Average Speedups on 9 Graph Orderings and
3 Graph Algorithms under Different Settings

11 Origin DFS f[o BFS-R It METIS s MLOGGAPA SlashBurn In Hybrid Is Cache It GRO

4

3.6x 12.7x
sl12 3 3.3x
1 L I
2.1x &g 0
9 9 2 1.7x
1.4x l % A . % l 1.3x .
5] 2.7x 5]
-IIIII S ooni Lol Tull
1 N o= ._l = . .
Scalar SIMD SIMD+BSR Scalar SIMD SIMD+BSR Scalar SIMD SIMD+BSR
(a) Triangle Counting (b) Maximal Clique (c) Subgraph

Matching

10 ¢

Comparisons

—_
(=
)

Evaluation Results

Number of All-pairs Comparisons vs. Compactness Score

]
T
I

S
=
T

MLOGGAPA °
BFS —R. Hybrid.
Origin
METIS
® DFs
Cache ®
GRO.
2 3 4 S 6

" Compactness Score

(a) Triangle Counting

Comparisons

100}

lOSj

MLOGGAPA.
Hybrid
Origin yprid @
BFS-
DFS R.
MET]S.

Cachc.

GrO®

2 3 4 5 6

Compactness Score

(b) Maximal Clique

Comparisons

104}

=)
T

MLOGGAPA
Hybrid
Origiy yornd @
DS BFSR
METIS
®

Cache.

GRO®

2 3 4 5 6

Compactness Score

(c) Subgraph
Matching

Evaluation Results

Comparing with state-of-the-arts

VS. Roaring [13], that is reported as the fastest set intersection against other compression
techniques (reported in SIGMOD 2017 experimental study paper [14])

RoaringBitmap: 12.7¢ 12 GRO+SIMD+BSR|
I8 Origin '* DFS "s BFS-R .7x
812 I8 METIS s MLOGGAPA ' SlashBurn 1
— |[Im Hybrid I Cache 11 GRO
I
=
&0
.E 8 B u
S
=
=
2
L @ qar
w
2 L4x\N
1 =

Evaluation Results

Comparing with state-of-the-arts

VS. EmptyHeaded, in TODS 2017 [6]

EmptyHeaded:
* A high-level relational engine for graph processing achieves performance
comparable to that of low-level engines.

Input Query Compiler Generated Code Execution Engine Output
Sy = (.T[.\(R(TJTXR) r
Data Query Vo for x in s \ Data
R | Ks(x,y,z) :- A:R sy := (my R[x] N iy R) K
oj1|| Rxy), % XiX/yrz % foryinsy: % Ny layout X|vIz
1l2 R(y,z), sz := (7 R[y] N 7, R[X]) Optimizer 5 1 5
0j2|| Rix,z). forzins;:
_) Kz U (x,y,2) _ Y,

T

Using worst-case optimal \,A: set-
join algorithm [15, 16] intersection

Execution Engine
SIMD Set Intersection Algorithms:

* Directly use some off-the-shelf algorithms:
e SIMDShuffling [11]
* V1,V3
e SIMDGalloping [17]
* Bmiss [18]

41

Execution Engine
SIMD Set Intersection Algorithms:

1071

104
—_ SIMDShuffling .
=2, SIMDGalloping 2,
2 Miss o .
£ \ £ BMiss
< 10- '(:; SIMDGalloping ~N
5 V1 5
g V3 S o
= X SIMDShuffling
L L
\
'lOfG . -5
10! 107 H0 1073 1072 10°!
|S1|/|S2] Density

Automatically switch between SIMDShuffling and SIMDGalloping
at the run time by considering the skew ratio (|S1|/|S2|)

42

Evaluation Results

Comparing with state-of-the-arts

VS. EmptyHeaded, in TODS 2017 [9]

o0

i

1EmptyHeaded
1 GRO+SIMD+BSR

IsEmptyHeaded+QFilter a

)

=\

Speedup (EmptyHeaded=1.0)
N

TC

6.47x

5.41x

4-Clique

Conclusions

* BSR Layout is used to represent node ID sets, which is
tailored for accelerating set intersection using SIMD
instructions

* A byte-checking strategy is proposed in our Qfliter
algorithm, with some theoretical analysis.

* We propose a hew graph ordering algorithm to find a
better graph ordering to save the compactness of BSR
representation.

* Qfilter+SIMD+GRO does improve the graph performance

greatly (3-10x speedup)

Our codes are https://github.com/Caesar11/GraphSetinte
here rsection.git

References

[1] Shumo Chu and James Cheng. 2011. Triangle listing in massive networks and its
applications. In SIGKDD. ACM, 672-680.

[2] Coen Bron and Joep Kerbosch. 1973. Finding all cliques of an undirected graph
(algorithm 457). Commun. ACM 16, 9 (1973), 575-577.

[3] Luigi Pietro Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004.
A (sub) graph isomorphism algorithm for matching large graphs. TPAMI 26, 10

(2004), 13671372

[4] Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. 2013. Turbo iso: towards
ultrafast and robust subgraph isomorphism search in large graph databases. In
SIGMOD. ACM, 337-348.

[5] Shuai Ma, Yang Cao, Wenfei Fan, Jinpeng Huai, Tianyu Wo: Strong simulation:
Capturing topology in graph pattern matching. ACM Trans. Database Syst. 39(1):
4:1-4:46 (2014)

[6] Christopher R Aberger, Andrew Lamb, Susan Tu, Andres No6tzli, Kunle Olukotun,
and Christopher Ré. 2017. Emptyheaded: A relational engine for graph processing.
TODS 42, 4 (2017), 20.

References

[7] Lei Zou, M. Tamer Ozsu, Lei Chen, Xuchuan Shen, Ruizhe Huang,
Dongyan Zhao: gStore: a graph-based SPARQL query engine. VLDB J. 23(4):
565-590 (2014)

[8] Julian R. Ullmann: An Algorithm for Subgraph Isomorphism.J. ACM
23(1): 31-42 (1976)

[9] Erik D Demaine, Alejandro Lépez-Ortiz, and J lan Munro. Adaptive set
intersections, unions, and differences. In SODA (2000)

[10] Hiroshi Inoue, Moriyoshi Ohara, and Kenjiro Taura. 2014. Faster set
intersection with simd instructions by reducing branch mispredictions.
PVLDB 8, 3 (2014), 293-304.

[11] llya Katsov. 2012. Fast intersection of sorted lists using SSE
instructions. (2012). https://highlyscalable.wordpress.com/2012/06/05/
fast-intersection-sorted-lists-sse/

[12] Benjamin Schlegel, Thomas Willhalm, and Wolfgang Lehner. 2011.
Fast sorted-Set intersection using SIMD instructions. In ADMS@VLDB. 1-8.

[13] Daniel Lemire, Owen Kaser, Nathan Kurz, Luca Deri, Chris O’Hara, Francois
Saint-Jacques, and Gregory Ssi-Yan-Kai. 2017. Roaring bitmaps: Implementation of
an optimized software library. SPE (2017).

[14] JianguoWang, Chunbin Lin, Yannis Papakonstantinou, and Steven Swanson.
2017. An Experimental Study of Bitmap Compression vs. Inverted List Compression.
In SIGMOD. ACM, 993-1008.

[15] Hung Q. Ngo, Ely Porat, Christopher Ré, Atri Rudra: Worst-case Optimal Join
Algorithms. J. ACM 65(3): 16:1-16:40 (2018)

[16] Hung Q. Ngo, Christopher Ré, Atri Rudra: Skew strikes back: new
developments in the theory of join algorithms. SIGMOD Record 42(4): 5-16 (2013)

[17] Daniel Lemire, Leonid Boytsov, and Nathan Kurz. 2016. SIMD compression and
the intersection of sorted integers. SPE 46, 6 (2016), 723-749.

[18] Hiroshi Inoue, Moriyoshi Ohara, and Kenjiro Taura. 2014. Faster set
intersection with simd instructions by reducing branch mispredictions. PVLDB 8, 3
(2014), 293-304.

Thanks

