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Graph is everywhere:

Social Network Citation Network Road Network

Protein Network Knowledge Graph Internet

Background



Background
A graph is a set of nodes and edges that connect them:

Edge

Node



Background
How to represent a large sparse graph ? 

• Adjacency Matrix 

• Adjacency List 
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Motivation

• Set Intersection
Problem Definition: Given two sets A and B, 
how to compute ! ∩ # efficiently ?



Motivation

• Why Set-Intersection is important in graph 
algorithms/systems.

Common Computing Pattern in Graph 
Algorithms.  
• Triangle Counting [1]
• Clique Detection [2]
• Subgraph Isomorphism [3,4]
• Graph Simulation [5]
……

Important Component in Graph System
• EmptyHead [6] 
• gStore [7]
……



Motivation

• Triangle Counting
Given a graph G, returns the number of triangles involved in the graph. 

!

"

#$(!)

#$(") • Compute a descending order of node degree ', such 
that if ' ! < ' " then )*+ ! ≤ )*+ " ;

• For ! ∈ . do:
• #$ ! = " ∈ # ! | ' ! < ' "

• For !, " ∈ 2 and ' ! < ' " do:
• 3 = 4567897:6 #$ ! , #$ "
• Δ = Δ ∪ !, " ×3



Motivation

• Maximal Clique Detection
Given a graph G, returns all maximal cliques in the graph.  

!

" # = Ø

v
!′ = ! ∪ (

v
") = " ∩ + ( #′ = Ø

• ,-./0-1.23ℎ 5, 7, 8 :
• If 7 = ∅ and 8 = ∅:

• Report 5 as a maximal clique
• For : ∈ 7 do:

• 5) = 5 ∪ :
• 7) = <+=>!?>@= 7,A :
• 8) = <+=>!?>@= 8,A :
• Call ,-./0-1.23ℎ 5′, 7′, 8′
• 7 = 7 ∖ {:}
• 8 = 8 ∪ {:}



Motivation

• Subgraph Isomorphism
Neighbor Connection Pruning 

A

B C

A

B C

A

!"
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!# !$
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Step 1: Finding Candidate Matching 
nodes  (only considering vertex labels)
( !" = %#,%'
( !# = {%$}
( !$ = {%", %&}

Step 2: Neighbor Connection Pruning
Considering edge (!", !$)

/ %" = %$ ∩ ( !" = 1

=> ( !$ = {%", %&}

G
Q

Used in ULLMAN [8],VF2 [3] and 
TurboISO [4] algorithms



Motivation

Profiling of 3 Representative Graph Algorithms

# Set Inter. 
Calls

Set Inter. 
Time

Total 
Time

Prop.

Triangle Counting 21274216 9.9s 10.5s 94.3%
Maximal Clique 254503699 120.7s 164.1s 73.6%
Subgraph Matching 120928579 31.5s 54.1s 58.2%

Set Intersection plays an important role!

Let us see some experiment results 



Motivation

• Why Set-Intersection Important ?

Clique Detection

Triangle Counting/Listing 

Subgraph Matching

!
Clustering Coefficient

Triangle−based Community DetecCon (- − /0122)
……

!
Maximal Commong Subgraph

Dense Subgraph DetecCon (- − >?@A1B)
……

!
SPARQL Query

Social Group Finding
……

Speeding up set-intersection will result in accelerating a bunch of graph 
computing tasks.

set-
intersection

Primitive Operations



Related Work
• SIMD Instructions
SIMD: Single instruction multiple data.

C-intrinsics Meanings
_mm_load_si128() Load consecutive 128 bit piece of data from 

memory that aligned on a 16-byte boundary to a 
SIMD register.

_mm_store_si128() Write the content of a register to aligned memory.

_mm_shuffle_epi32(a,b) Shuffle 32-bit integers in a according to the control 
mask in b. 

_mm_and_si128(a,b) Compute bitwise AND of 128 bits data in a and b.  

!"

#
!"

!#!$ !%

" % $
!# !% !$

_mm_shuffle_epi32(a,b)



Related Work

C-intrinsics Meanings
_mm_andnot_si128(a,b) Compute the bitwise NOT of 128 bits data in a 

and then AND with b.

_mm_cmpeq_epi32(a,b) Compares the four 32-bit integers in a and b for 
equality. 

_mm_movemask_ps() Create masks for the most significant bit of each 
32-bit integer

_mm_movemask_epi8() Creat masks for the most significant bit of each 
8-bit integer

• SIMD Instructions (continued)
SIMD: Single instruction multiple data.

!

"
#

$# %

# $ &
' # '

_mm_cmpeq_epi32(a,b)



Related Work
• Pairwise Set-Intersection
Merge-based Solution 

# of comparisons: 
Best case:  Min $% , $'
Worst case: |$%| + |$'|



Related Work
• Pairwise Set-Intersection
SIMD Merge-based Solution [10, 11, 12]  

Step 1: (LOAD)
Load two blocks of elements from 
two arrays into SIMD registers (using 
_mm_load_si128() ). 

Step 2: (COMPARE)
Make all-pairs comparison between two 
blocks in parallel. 
• Employing SIMD compare instructions 

(_mm_compeq_epi32() )
• Pack the common values together by 

shuffle instructions (_mm_shuffle_epi32())
• Store them in the result array 

(_mm_store_si128())

Step 3: (FORWARD)
Compare the last elements of the two 
blocks. If equal, move forward both 
pointers; otherwise, only advance the 
pointer of the smaller one to the next 
block. 



Related Work
• Pairwise Set-Intersection
SIMD Merge-based Solution (Shuffling  [11] ) 

Step 2: (COMPARE)
Make all-pairs comparison between two 
blocks in parallel. 

1 2 3 4

1 3 4 5

1 2 3 4

5 1 3 4

Loop 1:

Loop 2:

! " " "

" " ! !

Loop 3:

Loop 4: 1 " ! ! Final mask. 

1 3 4set_c



Related Work
• Pairwise Set-Intersection
Merge-based solution does not work well when two set sizes are significantly 
different (e.g., !"!# ≥ 32 '( !#

!"
≥ 32) . 

Binary Search-based method works, e.g. Galloping [9]
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Base and State Representation

! "#$ "" "% &% &' '!&('!&)'!&#Neighbor 
Set



Our Algorithm-QFilter
• INPUTS: two sets in BSR format
!"#, %"# ; !"', %"(

0 1 2 259

…0100 ….1001 ….0111 …1101

0 2 3 256

…0011 …1110 …0110 …1011

!"#
%"#

!"(
%"(

2

…0110

!")
%")

• OUTPUT: the intersection set !"), %")
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Overview
Load 4 base values

No match?

Filter by byte-checking

Load 4 state chunks

Align and match

Gather results and write 
back

Advance array pointers

Main Stage 1:
Compare the base values from the 
two sets. We quickly filter out the 
redundant comparisons by byte-
checking using SIMD instructions.

Main Stage 2:
For the matched base values, we 
execute the bitwise AND operation 
on the corresponding state chunks.



���	��� 	��

23

Considering the least significant byte of each base value.  

If there exists multi-hit cases, it must be false positive . We need to check 
the next byte.  
!!! BUT  we claim “multi-hit” case rarely happens (both theoretical 
analysis and experiment results) (less than 1.9% ) 
The filter step stops when there are only no-hit or one-hit. 

0000 0100 0010Filter vector
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0000 0100 0010

Filter vector
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Output
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Intra-chunk and Inter-chunk Parallelism

• Intra-chunk Parallelism:
• Each chunk in BSR represents several elements by an integer. 

In this way, we can process multiple elements within a chunk.
• Inter-chunk Parallelism:
• We can process multiple chunks simultaneously by SIMD 

instructions.

Intra-chunk Parallelism + Inter-chunk Parallelism à More than 10x speedup!
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Quantitative Analysis

A match that includes at least one “multi-hit” is called “multi-match”. 
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Quantitative Analysis

Definition. (Selectivity) : Given two sets !" and  !#, the selectivity is defined as  
follows:

%&'&()*+*), = |!/|
012( !" , !# )

Let 5 to be the probability of successful matching for one comparison as a random 
variable.  
If the intersection algorithm takes 6 comparisons in total, the probability 5 is

5 = !/
6

Since     16 ; 012 <=
> , <?> ≤ 6 ≤16; <=

> + <?
>

Thus,   5 ≤ 0.25 ; %&'&()*+*), ≤ 0.25
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Quantitative Analysis

In the byte-checking filter step, suppose that the range of base values is up 
to w bits; each turn we take b bits to check. 
Note that we have no false negatives.  

Positive Negative
True ! 2# − 2#%&

2# − 1 (1 − !)

False 2#%& − 1
2# − 1 (1 − !) 0

After checking the least significant byte, we have the following :

* +,%-./ = *123 ;
* ,+5%-./ = 4×*128 × * 19 + * ;9 ;

* <=>/.%-./ = 1 − * +,%-./ − * ,+5%-./ ;

? @ABCD%@ECFG

= H − ? IJ%GDC + ? JIK%GDC
L
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Quantitative Analysis

Typically, in practice, !"#"$%&'&%( < 0.1,
&. ". . < 0.025 ;

2 345678396:; < 1.90%
2 >?8396:; > 62.6 %

Fewer CPU cycles than other 
methods

High pruning power of our Qfilter
byte-checking approach.  
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Let us see some experiments
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The Node Ordering Matters

! " # !’ % #′
… … … …

'( '), '+, ',, '-) '. '/, '-, '(, ')
') '(, ',, '-) ') '/, '., '(
… … … …

27 state chunks in total 17 state chunks in total

(chunk size = 8)



�
���� ��
��
	
�
BSR Compactness Score

• !:		the state chunk size of BSR;
• $: the node ID assignment function, $. & → {0, 1, … , & − 1};
• /01 23 (or /04 23 ): the number of state chunks of 23’s out-neighbors (or in-neighbors);
• 51 23 (or 54 23 ): the biased weight to estimate the accessing frequency of 23’s out-

neighbors (or in-neighbors).

6 7,!, $, 5 = 9
:;∈=

51 23 ⋅ /01 23 + 54 23 ⋅ /04 23
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Definition of the Graph Reordering Problem

• Given a graph !(#, %), where each node '( ∈ # is assigned with the 
ID * in advance, a state chunk size +. The graph reordering problem
is to find the node ID assignment function ,. # → {0, 1, … , # −
1}, which minimizes the compactness score 5 !,+, ,, 6 .



�
���� ��
��
	
�
Hardness

• The graph reordering problem is NP-complete.

• we propose an approximate algorithm that can find a better 
ordering to enhance the intra-chunk parallelism.
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Average Speedups on 9 Graph Orderings and 
3 Graph Algorithms under Different Settings

(a) Triangle Counting (b) Maximal Clique (c) Subgraph 
Matching
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Number of All-pairs Comparisons vs. Compactness Score

(a) Triangle Counting (b) Maximal Clique (c) Subgraph 
Matching
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Comparing with state-of-the-arts

VS. Roaring [13], that is reported as the fastest set intersection against other compression 
techniques (reported in SIGMOD 2017 experimental study paper [14])  
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Comparing with state-of-the-arts

VS. EmptyHeaded, in TODS 2017 [6]

EmptyHeaded:
• A high-level relational engine for graph processing achieves performance 

comparable to that of low-level engines.

Using worst-case optimal 
join algorithm [15, 16]

set-
intersection
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SIMD Set Intersection Algorithms:

• Directly use some off-the-shelf algorithms:
• SIMDShuffling [11]
• V1, V3
• SIMDGalloping [17]
• Bmiss [18]
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SIMD Set Intersection Algorithms:

Automatically switch between SIMDShuffling and SIMDGalloping
at the run time by considering the skew ratio ( !1 / !2 )
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Comparing with state-of-the-arts

VS. EmptyHeaded, in TODS 2017 [9]
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Conclusions
• BSR Layout is used to represent node ID sets, which is 

tailored for accelerating set intersection using SIMD 
instructions 

• A byte-checking strategy is proposed in our Qfliter
algorithm, with some theoretical analysis. 

• We propose a new graph ordering algorithm to find a 
better graph ordering to save the compactness of BSR 
representation. 

• Qfilter+SIMD+GRO does improve the graph performance 
greatly (3-10x speedup)
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