
Database replication for
commodity database services

Gustavo Alonso
Department of Computer Science
ETH Zürich
alonso@inf.ethz.ch
http://www.iks.ethz.ch

©Gustavo Alonso. ETH Zürich. 2

Replication as a problem

©Gustavo Alonso. ETH Zürich. 3

How to replicate data?
 Depending on when the updates are propagated:

 Synchronous (eager)
 Asynchronous (lazy)

 Depending on where the updates can take place:
 Primary Copy (master)
 Update Everywhere (group)

Synchronous

Asynchronous

Primary
copy

Update
everywhere

©Gustavo Alonso. ETH Zürich. 4

Theory …
 The name of the game is correctness and consistency
 Synchronous replication is preferred:

 copies are always consistent (1-copy serializability)
 programming model is trivial (replication is transparent)

 Update everywhere is preferred:
 system is symmetric (load balancing)
 avoids single point of failure

 Other options are ugly:
 inconsistencies
 centralized
 formally incorrect

Synchronous

Asynchronous

Primary
copy

Update
everywhere

©Gustavo Alonso. ETH Zürich. 5

… and practice
 The name of the game is throughput and response time
 Asynchronous replication is preferred:

 avoid transactional coordination (throughput)
 avoid 2PC overhead (response time)

 Primary copy is preferred:
 design is simpler (centralized)
 trust the primary copy

 Other options are not feasible:
 overhead
 deadlocks
 do not scale

Synchronous

Asynchronous

Primary
copy

Update
everywhere

©Gustavo Alonso. ETH Zürich. 6

The dangers of replication ...
SYNCHRONOUS

 Coordination overhead
 distributed 2PL is

expensive
 2PC is expensive
 prefer performance to

correctness
 Communication overhead

 5 nodes, 100 tps, 10 w/txn
= 5’000 messages per
second !!

UPDATE EVERYWHERE
 Deadlock/Reconciliation rates

 the probability of conflicts
becomes so high, the
system is unstable and
does not scale

 Useless work
 the same work is done by

all
 administrative costs paid

by everybody
 all nodes must understand

replication (not trivial)

©Gustavo Alonso. ETH Zürich. 7

Text book replication (BHG’87)

Read One, Write All
 Each site uses 2PL
 Atomic commitment through

2PC
 Read operations are

performed locally
 Write operations involve

locking all copies of the data
item (request a lock, obtain
the lock, receive an
acknowledgement)

 Optimizations are based on
the idea of quorums

SITE A SITE B SITE C

BOT

R(x)

W(x)
Lock Lock

Upd

Upd Upd

... ...

request

ack

change

©Gustavo Alonso. ETH Zürich. 8

Response Time

centralized database update

T=

T=

replicated database update: 2N messages
2PC

The way replication takes place (one operation at a time),
increases the response time and, thereby, the conflict
profile of the transaction. The message overhead is too
high (even if broadcast facilities are available).

©Gustavo Alonso. ETH Zürich. 9

 Approximated deadlock rate:

if the database size remains
constant, or

if the database size grows with
the number of nodes.

 Optimistic approaches result
in too many aborts.

TPS Action_Time Actions N

4 DB_Size

2 5 3

2

! ! !

!

TPS Action_Time Actions N

4 DB_Size

2 5

2

! ! !

!

 A B C

BOT

R(x)

W(x)
Lock

D

Lock
W(x)

BOT

Deadlocks (Gray et al. SIGMOD’96)

©Gustavo Alonso. ETH Zürich. 10

Commercial systems

1 2 3 4 5

0

2 0 0

4 0 0

6 0 0

8 0 0

R e p l i c a t i o n u s i n g d i s t r i b u t e d l o c k i n g

N u m b e r o f R e p l i c a s

R
es

po
ns

e
T

im
e

in
 m

s

©Gustavo Alonso. ETH Zürich. 11

Cost of Replication

0

10

20

30

40

50

60

0 0.1 0.3 0.5 0.7 0.9 1

System with

50 nodes

Available

CPU

ws

(replication

factor)

 Overall computing power of
the system:

 No gain with large ws factor
(rate of updates and fraction
of the database that is
replicated)

 Quorums are questionable,
reads must be local to get
performance advantages.

N

1 w s (N 1)+ ! ! "

©Gustavo Alonso. ETH Zürich. 12

GANYMED: Solving the replication problem

©Gustavo Alonso. ETH Zürich. 13

What can be done?
 Are these fundamental limitations or side effects of the way

databases work?
 Consistency vs. Performance: is this a real trade-off?
 Cost seems to be inherent: if all copies do the same, no

performance gain
 Deadlocks: typical synchronization problem when using locks
 Communication overhead: ignored in theory, a real show-

stopper in practice

 If there are no fundamental limitations, can we do better? In
particular, is there a reasonable implementation of synchronous,
update everywhere replication?
 Consistency is a good idea
 Performance is also a good idea
 Nobody disagrees that it would be nice …
 … but commercial systems have given up on having both !!

©Gustavo Alonso. ETH Zürich. 14

Consistency vs. Peformance
 We want both:

 Consistency is good for
the application

 Performance is good for
the system

 Then:
 Let the application see a

consistent state ...
 ... although the system is

asynchronous and primary
copy

 This is done through:
 A middleware layer that

offers a consistent view
 Using snapshot isolation

as correctnes criteria

REPLICATION MIDDLEWARE

I see a
consistent

state

Asynchronous
Primary copy

©Gustavo Alonso. ETH Zürich. 15

Two sides of the same coin
SNAPSHOT ISOLATION

 To the clients, the
middleware offers snapshot
isolation:
 Queries get their own

consistent snapshot
(version) of the database

 Update transactions work
with the latest data

 Queries and updates do
not conflict (operate of
different data)

 First committer wins for
conflicting updates

 PostgreSQL, Oracle, MS
SQL Server

ASYNCH – PRIMARY COPY
 Primary copy: master site

where all updates are
performed

 Slaves: copies where only
reads are peformed

 A client gets a snapshot by
running its queries on a copy

 Middleware makes sure that a
client sees its own updates
and only newer snapshots

 Updates go to primary copy
and conflicts are resolved
there (not by the middleware)

 Updates to master site are
propagated lazily to the
slaves

©Gustavo Alonso. ETH Zürich. 16

Ganymed: Putting it together
• Based on JDBC drivers

• Only scheduling, no
concurrency control, no
query processing ...

• Simple messaging, no
group communication

• Very much stateless
(easy to make fault
tolerant)

• Acts as traffic
controller and
bookkeeper

•Route queries to a copy
where a consistent
snapshot is available

• Keep track of what
updates have been done
where (propagation is
not uniform)

©Gustavo Alonso. ETH Zürich. 17

Linear scalability

©Gustavo Alonso. ETH Zürich. 18

Improvements in response time (!!!)

©Gustavo Alonso. ETH Zürich. 19

Fault tolerance (slave failure)

©Gustavo Alonso. ETH Zürich. 20

Fault tolerance (master failure)

©Gustavo Alonso. ETH Zürich. 21

GANYMED: Beyond conventional replication

©Gustavo Alonso. ETH Zürich. 22

Oracle master – PostgreSQL slaves

©Gustavo Alonso. ETH Zürich. 23

Oracle master – PostgreSQL slaves

©Gustavo Alonso. ETH Zürich. 24

Updates through SQL (Oracle-Postgres)

©Gustavo Alonso. ETH Zürich. 25

Updates through SQL (Oracle-Postgres)

©Gustavo Alonso. ETH Zürich. 26

DB2 master – PostreSQL slaves

©Gustavo Alonso. ETH Zürich. 27

DB2 master – PostreSQL slaves

©Gustavo Alonso. ETH Zürich. 28

Critical issues
 The results with a commercial master and open source slaves is

still a proof of concept but a very powerful one
 More work needs to be done (in progress)

 Update extraction from the master
• Trigger based = attach triggers to tables to report updates

(low overhead at slaves, high overhead at master)
• Generic = propagate update SQL statements to copies (high

overhead at slaves, no overhead at master, limitations with
hidden updates)

 Update propagation = tuple based vs SQL based
 SQL is not standard (particularly optimized SQL)
 Understanding workloads (how much write load is really

present in a database workload)
 Replicate only parts of the database (table fragments, tables,

materialized views, indexes, specialized indexes on copies ...)

©Gustavo Alonso. ETH Zürich. 29

Query optimizations (DB2 example)
SELECT J.i_id, J.i_thumbnail
FROM item I, item J
WHERE (I.i_related1 = j.i_id OR I.i_related2 = j.i_id OR I.i_related3 =

j.i_id OR I.i_related4 = j.i_id OR I.i_related5 = j.i_id) AND i.i_id =
839;

©Gustavo Alonso. ETH Zürich. 30

Query optimization (DB2 example)
SELECT J.i_id, J.i_thumbnail
FROM item J
WHERE J.i_id IN (

(SELECT i_related1 FROM item WHERE i_id = 839) UNION
(SELECT i_related2 FROM item WHERE i_id = 839) UNION
(SELECT i_related3 FROM item WHERE i_id = 839) UNION
(SELECT i_related4 FROM item WHERE i_id = 839) UNION
(SELECT i_related5 FROM item WHERE i_id = 839)

);

©Gustavo Alonso. ETH Zürich. 31

Understanding workloads

1 : 3.1175.66 %24.34 %Ordering
1 : 8.2989.23 %10.77 %Shopping
1 : 30.1696.79 %3.21 %Browsing
RatioRead-onlyUpdatesTPC-W

7.70 : 112.837.70 : 36.28Ordering

6.38 : 409.116.38 : 49.35Shopping

7.50 : 1511.327:50 : 50.11Browsing

Ratio (total)
updates :
read only

Ratio (avg)
updates :
read only

 COST

6.23 : 10.206.23 : 3.28

6.28 : 54.636.28 : 6.59

6.29 : 313.366.92 : 10.39

Ratio (total)
updates :
read only

Ratio (avg)
updates :
read only

NON-OPTIMIZED SQL OPTIMIZED SQLPOSTGRES

©Gustavo Alonso. ETH Zürich. 32

A new twist to Moore´s Law
 What is the cost of optimization?

 SQL rewriting = several days two/three (expert) people
(improvement ratio between 5 and 10)

 Ganymed = a few PCs with open source software
(improvement factor between 2 and 5 for optimized SQL, for
non-optimized SQL multiply by X)

 Keep in mind:
 Copies do not need to be used, they can be kept dormant until

increasing load demands more capacity
 Several database instances can share a machine (database

scavenging)
 We do not need to replicate everything (less overhead for

extraction)

©Gustavo Alonso. ETH Zürich. 33

SQL is not SQL

SELECT * FROM (
 SELECT i_id, i_title, a_fname, a_lname,
 SUM(ol_qty) AS orderkey
 FROM item, author, order_line
 WHERE i_id = ol_i_id AND i_a_id = a_id
 AND ol_o_id > (SELECT MAX(o_id)-3333 FROM orders)
 AND i_subject = 'CHILDREN'
 GROUP BY i_id, i_title, a_fname, a_lname
 ORDER BY orderkey DESC
) WHERE ROWNUM <= 50

Amongst the 3333 most recent orders, the query
performs a TOP-50 search to list a category's most

popular books based on the quantity sold

Virtual column specific to Oracle.
In PostgreSQL = LIMIT 50

Use of MAX leads to sequential scan in Postgres,
change to:
 SELECT o_id-3333 FROM orders
 ORDER BY o_id DESC LIMIT 1

Current version does very
basic optimizations on the
slave side. Further work
on optimizations at the
middleware layer will
boost performance even
more

Optimizations can be very
specific to the local data

©Gustavo Alonso. ETH Zürich. 34

GANYMED: Our real goals

©Gustavo Alonso. ETH Zürich. 35

Database scavenging
 Ideas similar to cluster/grid computing tools that place computing

jobs in a pool of computers
 We want to dynamically place database slaves for master

databases in a pool of computers
 The goal is to have a true low cost, autonomic database cluster

GANYMED

DB-MASTER A

DB-MASTER B

DB-MASTER C

DB-MASTER D

SLAVE CLUSTER

©Gustavo Alonso. ETH Zürich. 36

Steps to get there
 We already have the performance and scalability gain
 We already have the ability to replicate commercial engines

(Oracle, DB2, SQL Server)
 What is missing

 Optimization of write set extraction or SQL update propagation
 Optimization of SQL statements forwarded to slaves
 Optimization of replication strategies in slaves

 Dynamic creation of slaves (many possibilities)
 Autonomic strategies for dynamic creation/deletion of slaves
 Grid engine for resource management

©Gustavo Alonso. ETH Zürich. 37

Databases as commodity service
 Remote applications use the database through a web services

enabled JDBC driver (WS-JDBC)

GANYMED
DB-MASTER A

DB-MASTER B

DB-MASTER C

DB-MASTER D

SLAVE CLUSTER

WEB SERVICES INTERFACE (WS-JDBC)

 INTERNET

©Gustavo Alonso. ETH Zürich. 38

Conclusions
 Ganymed synthesizes a lot of previous work in DB replication

 Postgres-R (McGill)
 Middle-R (Madrid Technical Uni.)
 Middleware based approaches (U. Of T.)
 C-JDBC (INRIA Grenoble, Object Web)
 ...

 Contributions
 There is nothing comparable in open source solutions
 Database independent
 Very small footprint
 Easily extensible in many context

• Can be turned into a lazy replication engine
• Can be used for data caching across WANs
• Almost unlimited scalability for dynamic content \ web data

 Very powerful platform to explore innovative approaches
 Databases as a commodity service
 Database scavenging
 Optimizations to commercial engines through open source slaves

