
TelegraphCQ: Continuous Dataflow
Processing for an Uncertain World

Michael Franklin
UC Berkeley

March 2003

Joint work w/the Berkeley DB
Group.

© 2003 Michael J. Franklin2

Telegraph: Context

l Networked data streams are central to current
and future applications.

Data is a commodity — it is useful only when it is moved to
where it is needed.

l Existing data management & query processing
infrastructure is not up to the task:
– Adaptability
– Continuous and Incremental Processing
– Work Sharing for Large Scale
– Resource scalability: from “smart dust” up to clusters to

grids.

© 2003 Michael J. Franklin3

Example App1: “Real-Time Business”

l Event-driven processing

l B2B and Enterprise apps

– Supply-Chain, CRM

– Trade Reconciliation, Order Processing etc.

l (Quasi) real-time flow of events and data

l Must manage these flows to drive business
processes.

l Mine flows to create and adjust business
rules.

l Can also “tap into” flows for on-line analysis.

© 2003 Michael J. Franklin4

Example App 2: Information Dissemination

User Profiles

Users

Filtered
Data

Data Sources

•Doc creation or crawler initiates flow of data towards users.
•Users + system initiate flow of profiles back towards data.

© 2003 Michael J. Franklin5

Example App 3: Sensor Networks

l Tiny devices measure the
environment.

– Berkeley “motes”, Smart Dust, Smart Tags, …

l Form dynamic ad hoc networks, aggregate
and communicate streams of values.

l Major research thrust at Berkeley.
– Apps: Transportation, Seismic, Energy,…

© 2003 Michael J. Franklin6

Common Features

l Centrality of dataflow
– Architecture is focused on data movement.
– Moving streams of data through operators in a

network.
 Requires intelligent, low-overhead, shared

routing and processing
l Volatility of the environment

– Dynamic resources & topology, partial failures
– Long-running (never-ending?) tasks
– Potential for user interaction during the flow
– Large Scale: users, data, resources, …
 Requires adaptivity

© 2003 Michael J. Franklin7

Adaptive Query Processing

l Existing systems are adaptive but at a slow rate.

– Collect Stats

– Compile and Optimize Query

– Eventually collect stats again or change schema

– Re-compile and optimize if necessary.

[Survey: Hellerstein, Franklin, et al., DE Bulletin 2000]

static
plans

current
DBMS

© 2003 Michael J. Franklin8

Adaptive Query Processing

l Goal: allow adjustments for runtime conditions.

l Basic idea: leave “options” in compiled plan.

l At runtime, bind options based on observed state:

– available memory, load, cache contents, etc.

l Once bound, plan is followed for entire query.
 [HP88,GW89,IN+92,GC94,AC+96, AZ96,LP97]

Dynamic,
Parametric,

Competitive,
…

static
plans

late
binding

current
DBMS

© 2003 Michael J. Franklin9

Adaptive Query Processing

l Start with a compiled plan.

l Observe performance between blocking
(or blocked) operators.

l Re-optimize remainder of plan if divergence
from expected data delivery rate [AF+96,UFA98]
or data statistics [KD98].

Dynamic,
Parametric,

Competitive,
…

static
plans

late
binding

inter-
operator

current
DBMS

Query
Scrambling,
MidQuery

Re-opt

© 2003 Michael J. Franklin10

Adaptive Query Processing

l Join operators themselves can be made adaptive:
– to user needs (Ripple Joins [HH99])

– to memory limitations (DPHJ [IF+99])

– to memory limiations and delays (XJoin [UF00])

l Plan Re-optimization can also be done in mid-
operation (Convergent QP [IHW02])

Dynamic,
Parametric,

Competitive,
…

static
plans

late
binding

inter-
operator

current
DBMS

Query
Scrambling,
MidQuery

Re-opt

Ripple Join,
XJoin, DPHJ,
Convergent

QP

intra-
operator

© 2003 Michael J. Franklin11

Adaptive Query Processing

l This is the region that we are exploring in the
Telegraph project at Berkeley.

Dynamic,
Parametric,

Competitive,
…

static
plans ???

late
binding

inter-
operator

per
tuple

current
DBMS

Query
Scrambling,
MidQuery

Re-opt

Eddies,
CACQ

XJoin, DPHJ
Convergent

QP

???

PSoup

intra-
operator

© 2003 Michael J. Franklin12

Outline

l Motivation and context

l Telegraph: basic technology

l The new TelegraphCQ system

l Stream semantics and language Issues

l Conclusions

© 2003 Michael J. Franklin13

Telegraph Overview

l An adaptive system for large-scale shared dataflow
processing.
– Sharing and adaptivity go hand-in-hand

l Based on an extensible set of operators:
1) Ingress (data access) operators

ß Screen Scraper, Napster/Gnutella readers,
ß File readers, Sensor Proxies

2) Non-Blocking Data processing operators
ß Selections (filters), XJoins, …

3) Adaptive Routing Operators
ß Eddies, STeMs, FLuX, etc.

l Operators connected through “Fjords” [MF02]
– queue-based framework unifying push&pull.

© 2003 Michael J. Franklin14

The Telegraph Project

l We’ve explored sharing and adaptivity in …
– Eddies: Continuously adaptive queries [SIGMOD 00]
– Fjords: Inter-module communication [ICDE 02]
– CACQ: Sharing, Tuple-lineage [SIGMOD 02]
– PSoup: Query=Data duality [VLDB 02]
– STeMs: Half-a-symmetric-join, tuple store [ICDE 03]
– FLuX: Fault tolerance, load balancing [ICDE 03]

l .. and built a first generation prototype [SIGMODRec01]
– Built from scratch in Java

l Currently finishing up 2nd generation [CIDR 03]
– In “C”, based on open-source PostgreSQL

© 2003 Michael J. Franklin15

Routing Operators: Eddies

• How to order and reorder operators over time?

– Traditionally, use performance, economic/admin feedback

– won’t work for never-ending queries over volatile streams

• Instead, use adaptive record routing.

 Reoptimization = change in routing policy

[Avnur & Hellerstein, SIGMOD 00]

static
dataflow

A B

C

D

eddy

A B C D

© 2003 Michael J. Franklin16

Eddy – Per Tuple Adaptivity

l Adjusts flow adaptively
– Tuples routed through ops in diff. orders
– Must visit each operator once before output
lState is maintained on a per-tuple basis

l Two complementary routing mechanisms
– Back pressure: each operator has a queue, don’t route

to ops with full queue – avoids expensive operators.
– Lottery Scheduling: Give preference to operators that

are more selective.
l Initial Results showed eddy could “learn” good plans

and adjust to changes in stream contents over time.
l Currently in the process of exploring the inherent

tradeoffs of such fine-grained adaptivity.

© 2003 Michael J. Franklin17

Traditional Hash Joins block when one input
stalls.

Non-Blocking Operators – Join

Build
Probe

Source A Source B

Hash
Table A

© 2003 Michael J. Franklin18

Non-Blocking Operators – Join

Hash
Table A

Hash
Table B

•Symm Hash Join [WA91] blocks only if both stall.
•Processes tuples as they arrive from sources.
•Produces all answer tuples and no spurious
duplicates.

Build
Probe

Source A Source B

© 2003 Michael J. Franklin19

SteMs:“State Modules”
 [Raman & Hellerstein ICDE 03]

•A generalization of the symmetric hash join (n-way)
•SteMs maintain intermediate state for multiple joins.
•Use Eddy to route tuples through the necessary modules.

•Be sure to enforce “build then probe” processing.
•Note, can also maintain results of individual joins in SteMs.
•Lots of other interesting/useful properties

A B C D

HashA
HashB HashC

HashD

A B C D

© 2003 Michael J. Franklin20

Shared Processing: CACQ
[Madden et al. SIGMOD 02]

s s
Stocks.

symbol = ‘MSFT’

Stocks.

symbol = ‘APPL’

Query 2Query 1

Stock Quotes

 ‘MSFT’

 ‘APPL’

Stock Quotes

s
s

l In some cases there will be hundreds to
thousands of queries over the same sources.

l Continuously Adaptive Continuous Queries

– combine operators from many queries to
improve efficiency (i.e. share work).

© 2003 Michael J. Franklin21

Combining Queries in CACQ

Q1 = Select * From S where
S.a = s1 and S.b = s4;

Q2 = Select * From S where
S.a = s2 and S.b = s5;

Q3 = Select * From S where
S.a = s3 and S.b = s6;

•Eddy now is routing tuples for multiple queries simultaneously
•Need additional per tuple state (a.k.a. “tuple lineage”)

•Can also use SteMs to store query specifications.
•Need a good predicate index if many queries.

•CACQ leverages Eddies for adaptive CQ processing
•Results show advantages over static approaches.

© 2003 Michael J. Franklin22

PSoup [Chandrasekaran & Franklin VLDB 02]

CQ systems tend to be “filters”
l No historical data.

– Would like “new” queries to access “old” data.
l Answers continuously returned as new data

streams into the system.
– Such continuous answers are often:

l Infeasible – intermittent connectivity and “Data Recharging” profiles.
l Inefficient – often user does not want to be continuously interrupted.

l Logical (?) conclusion:
– Treat queries and data as duals.

© 2003 Michael J. Franklin23

A Traditional Database System

Data

Query

Index

Result

© 2003 Michael J. Franklin24

Publish-Subscribe/CQ/Filtering Systems

Queries

 D
at

a

In
d

ex

Result

These systems can
be looked at as database
systems turned upsidedown.

© 2003 Michael J. Franklin25

PSoup: Query & Data Duality

Queries

Index

Result

DataData

Index

© 2003 Michael J. Franklin26

PSoup: Query & Data Duality

Queries

Index

Result

Data

Index

Query

© 2003 Michael J. Franklin27

PSoup (cont.)

l Query processing is treated as an n-way
symmetric join between data tuples and query
specifications.

l PSoup model:
 repeated invocation of standing queries over

windows of streaming data.

© 2003 Michael J. Franklin28

Data Store
ID R.bR.a

34

00

83

37

48

51

50

48

52

49

PSoup

Query Store
ID Predicate

0<R.a<=5

R.a=4 AND R.b=3

0>R.b>4

R.a>4 AND R.b=3

23

22

20

21

PSoup: New Select Query Arrival

SELECT *
FROM R
WHERE R.a <= 4
 AND R.b >=3
BEGIN (NOW – 600)
END (NOW)

NEW QUERY

BUILD
R.a<=4 AND R.b>=324

© 2003 Michael J. Franklin29

PROBE

Data Store
ID R.bR.a

34

00

83

37

48

51

50

48

52

49
R.a<=4 AND R.b>=324

New Selection Spec (continued)

Queries

2120

51

50

48

52

49

2322

T

F

24

F

T

F

D
a

t a

RESULTS

© 2003 Michael J. Franklin30

Data Store
ID R.bR.a

34

00

83

37

48

51

50

48

52

49

Query Store
ID Predicate

0<R.a<=5

R.a=4 AND R.b=3

0>R.b>4

R.a>4 AND R.b=3

23

22

20

21

24 R.a<=4 AND R.b>=3

Selection – new data

6353NEW DATA

BUILD 6353

PSoup

© 2003 Michael J. Franklin31

PROBE 6353

Query Store
ID Predicate

0<R.a<=5

R.a=4 AND R.b=3

0>R.b>4

R.a>4 AND R.b=3

23

22

20

21

24 R.a<=4 AND R.b>=3

Selection – new data (cont.)

Queries

2120

51

50

48

52

49

2322 24

D
a

ta

RESULTS

53 FT FF T

© 2003 Michael J. Franklin32

Outline

l Motivation and context

l Telegraph: basic technology

l The new TelegraphCQ system

l Stream semantics and language Issues

l Conclusions

© 2003 Michael J. Franklin33

TelegraphCQ - Shared CQ Processing
[CIDR 2003]

l Our first Prototype(s) had issues:
– Much ado about Java

l Java tools not great
l We’re in the business of moving tuples around

– Fighting the memory manager at every step

– Compiler Option per Thesis Topic

l We chose to build TCQ inside of PostgreSQL
– Large thriving community of users
– Useful features (UDFs,JDBC etc)
– In-house experience
– Proof that our flaky techniques could live in a real system.

l Basic approach
– Components reused, e.g., semaphores, parser, planner
– Components re-factored, e.g.,executor,access methods
– LOC: 18K new (out of ~120K)

© 2003 Michael J. Franklin34

Proxy

TelegraphCQ
Front End

Planner
Parser
Listener

Mini-Executor

Catalog

The TelegraphCQ Architecture

Query Plan Queue

Eddy Control Queue

Query Result Queues

}

Shared Memory

Split

TelegraphCQ
Back End

Modules

Scans

CQEddy
Split

© 2003 Michael J. Franklin35

The TelegraphCQ Architecture

TelegraphCQ
Wrapper

ClearingHouse

Wrappers

Proxy

TelegraphCQ
Front End

Planner
Parser
Listener

Mini-Executor

Catalog

Query Plan Queue

Eddy Control Queue

Query Result Queues

}

Shared Memory

Shared Memory Buffer Pool

Disk

Split

TelegraphCQ
Back End

Modules

Scans

CQEddy
Split

Split

TelegraphCQ
Back End

Modules

Scans

CQEddy

© 2003 Michael J. Franklin36

The TelegraphCQ Architecture

Proxy

TelegraphCQ
Front End

Planner
Parser
Listener

Mini-Executor

Catalog

Query Plan Queue

Eddy Control Queue

Query Result Queues

}Split

TelegraphCQ
Back End

Modules

Scans

CQEddy

TelegraphCQ
Wrapper

ClearingHouse

Wrappers

Shared Memory Buffer Pool

Disk

Cursor

© 2003 Michael J. Franklin37

Dynamic Query Addition

TelegraphCQ
Front End

Planner
Parser
Listener

Mini-Executor

Catalog

Split

TelegraphCQ
Back End

Modules

Scans

CQEddy

TelegraphCQ
Wrapper

ClearingHouse

Shared Memory Buffer Pool

Disk

Query Plan Queue

Eddy Control Queue

Query Result Queues

}

Legend
Data Tuples
Query + Control
Data + Query

Wrappers

Proxy

1

2
3

4
5

6

7

8

9 Cursor

© 2003 Michael J. Franklin38

Outline

l Motivation and context

l Telegraph: basic technology

l The new TelegraphCQ system

l Stream semantics and language Issues

l Conclusions

© 2003 Michael J. Franklin39

1 {t1,t2,t3

2 {t2,t3,t4

3 {t3,t4,t5

4 {t4,t5,t6

5 {t5,t6,t7

Time Tuple sets

Semantics of data streams

l Different notions of data streams
– Ordered sequence of tuples
– Bag of tuple/timestamp pairs [STREAM]
– Mapping from time to sets of tuples

l Data streams are unbounded
– Windows: vital to restrict data for a query

l A stream can be transformed by:
– Moving a window across it
– A window can be moved by

l Shifting its extremities
l Changing its size

© 2003 Michael J. Franklin40

An example

1

2

3

4

5

Time

t1

t2

t3

t4

t5

Tuple
Entry

Base Data
Stream

{t1

{t1,t2

{t1,t2,t3

{t1,t2,t3,t4

{t1,t2,t3,t4,t5

Sliding Window
Transformation

{t1

{t1,t2

{t2,t3

{t3,t4

{t4,t5

© 2003 Michael J. Franklin41

The StreaQuel Language

l An extension of SQL
l Operates exclusively on streams
l Is closed under streams
l Supports different ways to “create” streams

– Infinite time-stamped tuple sequence
– Traditional stable relations

l Flexible windows: sliding, landmark, and more
l Supports logical and physical time
l When used with a cursor mechanism, allows

clients to do their own window-based processing.
l Target language for TelegraphCQ

© 2003 Michael J. Franklin42

Classification of windowed queries

WHAT IS THE “ HOP- SIZE”

FOR THE INPUT SET?

Periodic

Never

Aperiodic

k = 1

k = other

k = windowSize

Periodicity (k)

on demand

INPUT

NOTION OF TIME

WHICH DIRECTION DO THE (OLDER,

NEWER) ENDS OF INPUT SET MOVE?

System Clock

Tuple Sequence Number

Snapshot - (fxd,fxd)

Sliding - (fwd, fwd)

Landmark - (fxd, fwd)

Reverse Landmark - (bwd, fxd)

(fxd, bwd)

Reverse Sliding - (bwd, bwd)

(fwd, bwd)

(bwd, fwd)

(fwd, fxd)

© 2003 Michael J. Franklin43

General Form of a StreaQuel Query

SELECT projection_list

FROM from_list

WHERE selection_and_join_predicates

ORDEREDBY

TRANSFORM…TO

WINDOW…BY

l Windows can be applied to individual streams

l Window movement is expressed using a “for loop
construct in the “transform” clause

l We’re not completely happy with our syntax at this
point.

© 2003 Michael J. Franklin44

Example – Landmark query

0 105 15 20 25 30 35 40 45 50 55 60

NOW = 40 = t

Timeline
STWindow

Timeline
STWindow

Timeline
STWindow

Timeline
STWindow

NOW = 41 = t

...

...

NOW = 45 = t

NOW = 50 = t

© 2003 Michael J. Franklin45

Outline

l Motivation and context

l Telegraph: basic technology

l The new TelegraphCQ system

l Stream semantics and language Issues

l Conclusions

© 2003 Michael J. Franklin46

Current Status - TelegraphCQ

l What’s running
– Shared joins with windows and aggregates
– Archived/unarchived streams

l PostgreSQL: Helped much more than expected
– Re-used a lot of code:

l Expression evaluator, semaphores, parser, planner

– Re-factored a fair bit:
l Executor,Access Methods
l Intermediate tuple formats

l Obstacles that we faced
– No threading L

l So far only wholly new code uses threads
l Not yet been able to experiment with process model
l Sharing – a few processes suffice anyway ?

© 2003 Michael J. Franklin47

What’s next

l Short term engineering stuff
– Ship an alpha release – aiming for end of this month
– Begin performance evaluations

l Ongoing research
– Interactions between storage and QoS
– Cluster and distributed implementations
– Adapting adaptivity

l Move tuples in batches
l Reduce frequency of plan changes

– Egress operations - application connectivity
l Pull vs push

– Query overlap - multiple back ends

© 2003 Michael J. Franklin48

The TelegraphCQ Team

l Students
– Sirish Chandrasekaran, Amol Deshpande,

Sailesh Krishnamurthy, Sam Madden,
Shankar Raman (emeritus), Fred Reiss,
Mehul Shah

l Faculty
– Mike Franklin and Joe Hellerstein

l Professionals
– Owen Cooper and Wei Hong

(With help and input from the whole Berkeley
database group.)

© 2003 Michael J. Franklin49

Conclusions
l Dataflow and streaming are central to many

emerging application areas.

l Adaptivity and Sharing are key requirements
– In TelegraphCQ sharing and adaptivity are

Two sides of the same coin !

l The PostgreSQL experience
– Saved tremendous time and effort

– Enabled realistic system comparisons

– Showed that our ideas are feasible in a real system

l Ongoing work involves other streaming
environments e.g. sensor networks and XML
filtering.

telegraph.cs.berkeley.edu

