TelegraphCQ: Continuous Dataflow
Processing for an Uncertain World

Michael Franklin
UC Berkeley

March 2003

Joint work w/the Berkeley DB
Group.

Telegraph: Context

e Networked data streams are central to current
and future applications.

Data is a commodity — it is useful only when it is moved to
where it is needed.

e Existing data management & query processing
infrastructure is not up to the task:
— Adaptability
— Continuous and Incremental Processing
- Work Sharing for Large Scale

- Resource scalability: from “smart dust” up to clusters to
grids.

© 2003 Michael J. Franklin

Example App1: “Real-Time Business”

Vs

e Event-driven processing
e B2B and Enterprise apps
- Supply-Chain, CRM
- Trade Reconciliation, Order Processing etc.
e (Quasi) real-time flow of events and data

e Must manage these flows to drive business
processes.

e Mine flows to create and adjust business
rules.

e Can also “tap into” flows for on-line analysis.

© 2003 Michael J. Franklin

)
7

Example App 2: Information Dissemination

-Doc creation or crawler initiates flow of data towards users.
Users + system initiate flow of profiles back towards data.

Data Sources

User Profiles

4 © 2003 Michael J. Franklin

Example App 3: Sensor Networks

e Tiny devices measure the
environment.

- Berkeley “motes”, Smart Dust, Smart Tags, ...

e Form dynamic ad hoc networks, aggregate
and communicate streams of values.

e Major research thrust at Berkeley.
- Apps: Transportation, Seismic, Energy,...

© 2003 Michael J. Franklin

Common Features

e Centrality of dafaflow
— Architecture is focused on data movement.

- Moving streams of data through operators in a
network.

mm) Requires intelligent, low-overhead, shared
routing and processing

e Volatility of the environment
- Dynamic resources & topology, partial failures
- Long-running (never-ending?) tasks
— Potential for user interaction during the flow
- Large Scale: users, data, resources, ...
=) Requires adaptivity

© 2003 Michael J. Franklin

Adaptive Query Processing

current
DBMS

e Existing systems are adaptive but at a slow rate.
— Collect Stats
- Compile and Optimize Query
- Eventually collect stats again or change schema
- Re-compile and optimize if necessary.

[Survey Hellerstein, Franklin, et al., DE Bulletin 2000]

© 2003 Michael J. Franklin

Adaptive Query Processing

late
binding

current ~ Dynamic,
DBMS Parametric,

Competitive,
e Goal: allow .adjustments for runtime conditions.
e Basic idea: leave “options” in compiled plan.
e At runtime, bind options based on observed state:
— available memory, load, cache contents, etc.

e Once bound, plan is followed for entire query.
[HP88,GW89,IN+92,GC94,AC+96, AZ96,LP9I7]

8 © 2003 Michael J. Franklin

Adaptive Query Processing

late inter-
binding operator

current Dynamic, Query
DBMS Parametric, Scr.ambhng,
Competitive, MidQuery
. Re-opt

e Start with a compiled plan.

e Observe performance between blocking
(or blocked) operators.

e Re-optimize remainder of plan if divergence
from expected data delivery rate [AF+96,UFA98]
or data statistics [KD98].

© 2003 Michael J. Franklin

Adaptive Query Processing

late inter- intra-
binding operator operator
T
current ~ Dynamic, Query Ripple Join,

DBMS Parametric, Scr.ambling, XJoin, DPHJ,
Competitive, MidQuery Convergent
Re-opt QP
e Join operators themselves can be made adaptive:
— to user needs (Ripple Joins [HH99])
— to memory limitations (DPHJ [IF+99])

- to memory limiations and delays (XJoin [UF00])

e Plan Re-optimization can also be done in mid-
operation (Convergent QP [IHW02])

10 © 2003 Michael J. Franklin

Adaptive Query Processing

=
late inter- intra- | per \
binding operator operator [tuple ?22?

current ~ Dynamic, Query Xjoin, DPHJ | Eddies, ??2?
DBMS Parametric, Scrambling, Convergent | CACQ
Competitive, MidQuery QP PSoup
Re-opt

e This is the region that we are exploring in the
Telegraph project at Berkeley.

11 © 2003 Michael J. Franklin

12

Outline

e Motivation and context

e Telegraph: basic technology

e The new TelegraphCQ system

e Stream semantics and language Issues
e Conclusions

© 2003 Michael J. Franklin

Telegraph Overview

e An adaptive system for large-scale shared dataflow
processing.

- Sharing and adaptivity go hand-in-hand

e Based on an extensible set of operators:

1) Ingress (data access) operators
= Screen Scraper, Napster/Gnutella readers,
= File readers, Sensor Proxies

2) Non-Blocking Data processing operators
= Selections (filters), XJoins, ...

3) Adaptive Routing Operators
= Eddies, STeMs, FLuX, etc.

e Operators connected through “Fjords” [MF02]

—- queue-based framework unifying push&pull.
13 © 2003 Michael J. Franklin

The Telegraph Project

e We’ve explored sharing and adaptivity in ...
- Eddies: Continuously adaptive queries
— Fjords: Inter-module communication
- CACQ: Sharing, Tuple-lineage
- PSoup: Query=Data duality
- STeMs: Half-a-symmetric-join, tuple store
- FLuX: Fault tolerance, load balancing

e .. and built a first generation prototype
— Built from scratch in Java

e Currently finishing up 2nd generation
- In “C”, based on open-source PostgreSQL

14 © 2003 Michael J. Franklin

Routing Operators: Eddies
[Avnur & Hellerstein, SIGMOD 00]

IV\
f\%\D
D C
ValaN
A B

« How to order and reorder operators over time?

— Traditionally, use performance, economic/admin feedback
— won't work for never-ending queries over volatile streams
« Instead, use adaptive record routing.

" Reoptimization = change in routing policy ... _

Eddy — Per Tuple Adaptivity
CONGD

e Adjusts flow adaptively
— Tuples routed through ops in diff. orders
- Must visit each operator once before output
e State is maintained on a per-tuple basis / \
e Two complementary routing mechanisms

- Back pressure: each operator has a queue, don’t route
to ops with full queue — avoids expensive operators.

— Lottery Scheduling: Give preference to operators that
are more selective.

e Initial Results showed eddy could “learn” good plans
and adjust to changes in stream contents over time.

e Currently in the process of exploring the inherent

tradeoffs of such fine-grained adaptivity.
16 © 2003 Michael J. Franklin

Non-Blocking Operators — Join

— Build
Hash —Probe
Table A
_— T~

Traditional Hash Joins block when one input
stalls.

17 © 2003 Michael J. Franklin

18

Non-Blocking Operators — Join

I Build
——Probe

Hash Hash
Table A TableB

Source

Symm Hash Join [WA91] blocks only if both stall.
*Processes tuples as they arrive from sources.
*Produces all answer tuples and no spurious
duplicates.

© 2003 Michael J. Franklin

SteMs:“State Modules”

[Raman & Hellerstein ICDE 03]

Hashy I Hash-

X

A B C D

A generalization of the symmetric hash join (n-way)

*SteMs maintain intermediate state for multiple joins.

*Use Eddy to route tuples through the necessary modules.
*Be sure to enforce “build then probe” processing.

*Note, can also maintain results of individual joins in SteMs.

Lots of other interesting/useful properties
19 © 2003 Michael J. Franklin

Shared Processing: CACQ
[Madden et al. SIGMOD 02]

e In some cases there will be hundreds to
thousands of queries over the same sources.

e Continuously Adaptive Continuous Queries

- combine operators from many queries to
improve efficiency (i.e. share work).

Query 1 Query 2

o O ‘MsFT

O — G,

Stocks. Stocks. APPL
symbol = ‘MSFT’ symbol = ‘APPL’ T

\/ Stock Quotes

Stock Quotes

© 2003 Michael J. Franklin

Combining Queries in CACQ

Q1 = Select * From S where) @T s.
S.a=sl and S.b = s4; Q=ls;s) | N j S,

Q2 = Select * From S where W=+ Eddy T OV
S.a=s2 and S.b = s5; r— Q-ls,s] | |
Q3 = Select * From S where Q@L’ 21
S.a=s3 and S.b =s6; Q-I[s,s] ¥ Sz

Data Source Filter over
S[a,b] S.a

*Eddy now is routing tuples for multiple queries simultaneously
*Need additional per tuple state (a.k.a. “tuple lineage”)
*Can also use SteMs to store query specifications.
*Need a good predicate index if many queries.
*CACQ leverages Eddies for adaptive CQ processing

*Results show advantages over static approaches.
21 © 2003 Michael J. Franklin

PSoup [Chandrasekaran & Franklin VLDB 02]

CQ systems tend to be “filters”
e No historical data.
- Would like “new” queries to access “old” data.

e Answers continuously returned as new data
streams into the system.

— Such continuous answers are often:

e Infeasible — intermittent connectivity and “Data Recharging” profiles.
e Inefficient — often user does not want to be continuously interrupted.

e Logical (?) conclusion:
- Treat queries and data as duals.

22 © 2003 Michael J. Franklin

A Traditional Database System

Publish-Subscribe/CQ/Filtering Systems

Querie

Xapuj

These systems can
be looked at as database
systems turned upsidedown.

24 © 2003 Michael J. Franklin

PSoup: Query & Data Duality

Queries

N

© 2003 Michael J. Franklin

PSoup: Query & Data Duality

27

PSoup (cont.)

e Query processing is treated as an n-way
symmetric join between data tuples and query
specifications.

e PSoup model:

repeated invocation of standing queries over
windows of streaming data.

© 2003 Michael J. Franklin

PSoup: New Select Query Arrival

Query Store Data Store
ID | Predicate ID |R.a|R.b
20 0<R.a<=5 48 1 4 | 3
21 | Ra>4ANDRb=3 [D| 49 | 7 | 3
22 0>R.b>4 0] 3 | 8
23 | R.a=4 AND R.b=3 1101 0
24 |R.a<=4 AND R.b>=3 2|8 | 4
@@(O

SELECT *

FROM R

WHERE R.a <=4

AND R.b >=3

BEGIN (NOW — 600)

END (NOW)

© 2003 Michael J. Franklin

29

New Selection Spec (continued)

24

R.a<=4 AND R.b>=3

Data Store

[ID[Ra[Rb]

Queries

20 | 21 | 22 | 23 | 24

48 T
49 F
50 T
51 F
52 F

RESULTS

© 2003 Michael J. Franklin

30

Selection — new data

o 13

Query Store Data Store
ID Predicate ID |[R.a|R.b
20 O<R.a<=5 48 | 4 3
21 | Ra>4aNDRb=3 |[D<|[49 | 7 3
22 0>R.b>4 50 | 3 8
23 R.a=4 AND R.b=3 51 0 0
24 | R.a<=4 AND R.b>=3 52 8 4

S 53 | 3 6

© 2003 Michael J. Franklin

31

Selection — new data (cont.)

Data

Query Store
ID Predicate
20 | -
21 | R.a>4 AND R.b=3
22 0>R.b>4
23 R.a=4 AND R.b=3

24 |}

Queries
20 | 21 | 22 | 23 | 24
48
49
50
51
52
53| T F F F T
RESULTS

533 6

© 2003 Michael J. Franklin

32

Outline

e Motivation and context

e Telegraph: basic technology

e The new TelegraphCQ system

e Stream semantics and language Issues
e Conclusions

© 2003 Michael J. Franklin

TelegraphCQ - Shared CQ Processing
[CIDR 2003]

e Our first Prototype(s) had issues:

— Much ado about Java

e Java tools not great

e \We're in the business of moving tuples around
- Fighting the memory manager at every step

— Compiler Option per Thesis Topic

e We chose to build TCQ inside of PostgreSQL
— Large thriving community of users
— Useful features (UDFs,JDBC etc)
— In-house experience
- Proof that our flaky techniques could live in a real system.

e Basic approach
- Components reused, e.g., semaphores, parser, planner

- Components re-factored, e.g.,executor,access methods

- LOC: 18K new (out of ~120K) | |
33 © 2003 Michael J. Franklin

34

The TelegraphCQ Architecture

Shared Memory

TelegraphCQ
Back End

Query Plan Queue

e

Eddy Control Queue

|

Query Result Queues

D

A

3

TelegraphCQ
Front End

Planner
Parser
Listener

Mini-Executor

Catalog

© 2003 Michael J. Franklin

The TelegraphCQ Architecture

Shared Memory

Query Plan Queue

e

Eddy Control Queue
T v

TelegraphCQ
Back End

TelegraphCQ
Front End

Planner
Parser
Listener

Query Result Queues
~>
R |

Shared Memory Buffer Pool

Mini-Executor

Catalog

Wrappers
TelegraphCQ

Wrapper

ClearingHouseg

35 © 2003 Michael J. Franklin

The TelegraphCQ Architecture

Query Plan Queue

e

Eddy Control Queue
T v

TelegraphCQ
Back End

Query Result Queues

)

TelegraphCQ
Front End

Planner
Parser
Listener

Catalog

Shared Memory Buffer Pool

Wrappers

=

36

TelegraphCQ
Wrapper
learingHouse

Mini-Executor .

ot

Cursor

© 2003 Michael J. Franklin

Dynamic Query Addition

Query Plan Queue

TelegraphCQ
Back End @

TelegraphCQ
Front End

Eddy Control Queue

Planner

|

Parser

Query Result Queues Listener Proxy
Mini-Executor
e SOr
Catalog

Legend

=l Data Tuples
el Quiery + Control
=l Data + Query

© 2003 Michael J. Franklin

Wrappers
TelegraphCQ

Wrapper
ClearingHouseg

37

38

Outline

e Motivation and context

e Telegraph: basic technology

e The new TelegraphCQ system

e Stream semantics and language Issues
e Conclusions

© 2003 Michael J. Franklin

Semantics of data streams

e Different notions of data streams Time T Tuple sets
- Ordered sequence of tuples
- Bag of tuple/timestamp pairs {ts’tG’t7
- Mapping from time to sets of tuples {t4,t5,t6
e Data streams are unbounded

- Windows: vital to restrict data for a query 3 {tB t4 t5
e A stream can be transformed by:

— Moving a window across it {tz,t3,t4
- A window can be moved by
e Shifting its extremities 1 t1.£2.13
e Changing its size o

39 © 2003 Michael J. Franklin

An example

Tuple Base Data Sliding Window
Time Entry Stream Transformation

5 t5 {tl ItZIt3@ {t4/t5
4 t, {tl,tzjt3,t4 {t3,t4

3 t3 {thtZItB {t21t3
2 tz t1 rtz {tlltz

o
+e 8§

40 © 2003 Michael J. Franklin

41

The StreaQuel Language

An extension of SQL

Operates exclusively on streams

Is closed under streams

Supports different ways to “create” streams
— Infinite time-stamped tuple sequence

- Traditional stable relations

e Flexible windows: sliding, landmark, and more
e Supports logical and physical time
e When used with a cursor mechanism, allows

clients to do their own window-based processing.
Target language for TelegraphCQ

© 2003 Michael J. Franklin

Classification of windowed queries

INPUT
WHICH DIRECTION DO THE (OLDER,
Notion oF Time NEWER) ENDS OF INPUT SET MOVE? WHAT Is THE « HoP- Size”
FOR THE INPUT SET?
System Clock Snapshot - (fxd,fxd)
Never
Tuple Sequence Number Landmark - (fxd, fwd) Periodicity (k)
Sliding - (fwd, fwd) k=1
Reverse Landmark - (bwd, fxd) Periodic k k = windowSize
Reverse Sliding - (bwd, bwd) k = other

(fxd, bwd)
(fwd, bwd)
(fwd, fxd) Aperiodic [| ondemand
(bwd, fwd)

© 2003 Michael J. Franklin

General Form of a StreaQuel Query

SELECT projection list

FROM from_list

WHERE selection _and _join predicates
ORDEREDBY

TRANSFORM...TO

WINDOW...By

e Windows can be applied to individual streams

e Window movement is expressed using a “for loop
construct in the “transform” clause

e We’re not completely happy with our syntax at this
point.
43 © 2003 Michael J. Franklin

Example — Landmark query

Transform
Stream1For(t = ST; t < ST + 10; t++)
To Streami(t)

Window
Streaml NOW = 40 = t
0 5 10 15 20 25 30 35 4}?/ 45 50 55
I I I I I I

| | | | /III | | >T I'
Imeline
Window /ST
/ NOW =41 =t
T T N | - L
1 1
/JI_I Timeline
Wlndow
.ee NOW = 45 = t
| | | | |
| | | | | >T I'
Window ST NOW = 50 Imetine
L I /
| | | |
— /II ——
Timeline
Window

© 2003 Michael J. Franklin

45

Outline

e Motivation and context

e Telegraph: basic technology

e The new TelegraphCQ system

e Stream semantics and language Issues
e Conclusions

© 2003 Michael J. Franklin

46

Current Status - TelegraphCQ

e What’s running
- Shared joins with windows and aggregates
— Archived/unarchived streams
e PostgreSQL: Helped much more than expected

- Re-used a lot of code:
e Expression evaluator, semaphores, parser, planner

- Re-factored a fair bit:
e Executor,Access Methods
e Intermediate tuple formats

e Obstacles that we faced
- No threading ®

e So far only wholly new code uses threads
e Not yet been able to experiment with process model
e Sharing — a few processes suffice anyway ?

© 2003 Michael J. Franklin

47

What’s next

e Short term engineering stuff
— Ship an alpha release — aiming for end of this month
—- Begin performance evaluations
e Ongoing research
- Interactions between storage and QoS
— Cluster and distributed implementations
— Adapting adaptivity

e Move tuples in batches
e Reduce frequency of plan changes

— Egress operations - application connectivity
e Pull vs push

— Query overlap - multiple back ends

© 2003 Michael J. Franklin

The TelegraphCQ Team

e Students

- Sirish Chandrasekaran, Amol Deshpande,
Sailesh Krishnamurthy, Sam Madden,
Shankar Raman (emeritus), Fred Reiss,
Mehul Shah

e Faculty

- Mike Franklin and Joe Hellerstein
e Professionals

- Owen Cooper and Wei Hong

(With help and input from the whole Berkeley
database group.)

48 © 2003 Michael J. Franklin

Conclusions

e Dataflow and streaming are central to many
emerging application areas.

e Adaptivity and Sharing are key requirements

- In TelegraphCQ sharing and adaptivity are
Two sides of the same coin !

e The PostgreSQL experience
- Saved tremendous time and effort
—- Enabled realistic system comparisons
- Showed that our ideas are feasible in a real system

e Ongoing work involves other streaming
environments e.g. sensor networks and XML

filtering. telegraph.cs.berkeley.edu

49 © 2003 Michael J. Franklin

