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°
Overview

* Goals/ motivation: find patterns in large
datasets:

— (A) Sensor data

— (B) network/graph data
 Solutions: self-similarity and power laws
* Discussion
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Applications of sensors/streams

* ‘Smart house’: monitoring temperature,
humidity etc

¢ Financial, sales, economic series
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Applications of sensors/streams

* ‘Smart house’: monitoring temperature,
humidity etc

¢ Financial, sales, economic series
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Motivation - Applications

¢ Medical: ECGs +; blood
pressure etc monitoring

* Scientific data: seismological;
astronomical; environment /
anti-pollution; meteorological

NRELIITINT
A
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Motivation - Applications
(cont’d)
* civil/automobile infrastructure
— bridge vibrations [Oppenheim+02]

— road conditions / traffic monitoring
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Motivation - Applications
(cont’d)

¢ Computer systems
— web servers (buffering, prefetching)

— network traffic monitoring
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http://repository.cs.vt.edu/Ibl-conn-7.tar.Z oo
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Web traffic

¢ [Crovella Bestavros, SIGMETRICS’96]
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Self-* Storage (Ganger+)

= “self-*” = self-managing, self-tuning, self-healing, ...
= Goal: 1 petabyte (PB) for CMU researchers
www.pdl.cmu.edu/SelfStar

survivable,
self-managing storage

a storage brick

-1PB (0.5-5 TB)

Waterloo, 2006

Self-* Storage (Ganger+)

= “self-*” = self-managing, self-tuning, self-healing, ...

\ Ashraf, Thab, Ken

survivable,
self-managing storage

frastructure

a storage brick

~1PB (0.5-5TB)
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Problem definition

e Given: one or more sequences
Xps Xps ooy Xpy ooy Op Yo eee s Yp oen)
e Find

— patterns; clusters; outliers; forecasts;
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Problem #1

# bytes
res00 — * Find patterns, in large
datasets
:
bl
g o 250 500
e 33 sl
time
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Problem #1

# bytes
0108 —  Find patterns, in large
&5 o
datasets
2 asews
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time
Poisson
indep.,
ident. distr
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Problem #1
# bytes
Tos08 e  Find patterns, in large
i o datasets
: J L l w [| '
time
SSQN
indep.,
ident. distr
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Problem #1
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Overview

# bytes
Tes00 o * Find patterns, in large

| datasets

3 3.58406

L

M.“m “t
time

P Q: Then, how to generate

ident. distr

Waterloo, 2006

such bursty traffic?

C. Faloutsos 17

* Goals/ motivation: find patterns in large datasets:
— (A) Sensor data
— (B) network/graph data

* Solutions: self-similarity and power laws

-

e Discussion
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Problem #2 - network and
graph mining
¢ How does the Internet look like?

¢ How does the web look like?

¢ What constitutes a ‘normal’ social
network?

e What is the ‘network value’ of a
customer?

» which gene/species affects the others
the most?

Waterloo, 2006 C. Faloutsos 19
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Network and graph mining

Protein Interactions
[genomebiology.com]

Friendship Network Food W?b
[Moody "01] [Martinez '91]

Graphs are everywhere!
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Problem#2

Given a graph:
¢ which node to market-to /
defend / immunize first?
 Are there un-natural sub-
graphs? (eg., criminals’ rings)?

[from Lumeta: ISPs 6/1999]

‘Waterloo, 2006 C. Faloutsos 21
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Solutions

* New tools: power laws, self-similarity and
‘fractals’ work, where traditional
assumptions fail

e Let’s see the details:

Waterloo, 2006 C. Faloutsos 22
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Overview

* Goals/ motivation: find patterns in large
datasets:

— (A) Sensor data
— (B) network/graph data

) - Solutions: self-similarity and power laws

¢ Discussion
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What is a fractal?

= self-similar point set, e.g., Sierpinski triangle:

zero area: (3/4)7inf
infinite length!
(4/3)7inf

Q: What is its dimensionality??

Waterloo, 2006 C. Faloutsos 24




What is a fractal?

= self-similar point set, e.g., Sierpinski triangle:

infinite length!

(4/3)Minf
Q: What is its dimensionality??
A:log3/log2 =1.58 (1)
Waterloo, 2006 C. Faloutsos 25

zero area: (3/4) inf
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Intrinsic (‘fractal’) dimension

¢ Q: fractal dimension * Q: fd of a plane?
of a line?
° L] ". L] P )
% ®e 5% d
. oo °
. . eS o 0
®e o ° L e° .
. e ® %o 0 .
L] L]
L] o0 L ) Ld
Ld ° P * o
. o o,
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Intrinsic (‘fractal’) dimension

¢ Q: fractal dimension ¢ Q: fd of a plane?

of a line? e Arnn(<=r1)~1"2
* Aimn(<=r1)~1"l fd== slope of (log(nn)
(‘power law’: y=x"a) vs.. log(r) )

‘Waterloo, 2006 C. Faloutsos 27

P
Sierpinsky triangle

== ‘correlation integral’

. A
lqg(ﬁp ars = CDF of pairwise distances
within <=r )

log(r)

Waterloo, 2006 C. Faloutsos 28

puter Scienc
Mellon

/ Observations: Fractals <->\
power laws

Closely related:

e fractals <=>

e self-similarity <=>
* scale-free <=>

Tog(#pairs

e power laws (y=x“; within <o

F=Kr?)

ws y=e or y=x9+b) _//
Waterloo, 2006 C. Faloutsos 29
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Outline

* Problems
¢ Self-similarity and power laws
= . Solutions to posed problems

¢ Discussion

Waterloo, 2006 C. Faloutsos 30
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Solution #1: traffic

e disk traces: self-similar: (also: [Leland+94])
* How to generate such traffic?

#bytes

Waterloo, 2006 C. Faloutsos 31
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Solution #1: traffic

o disk traces (80-20 ‘law’) — ‘multifractals’

20%/\ 80%

SR

#bytes

Waterloo, 2006 C. Faloutsos 32
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80-20 / multifractals
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80-20 / multifractals

20 A 80
*p; (1-p) in general

A A * yes, there are

dependencies
200
=
100
0
0 30000 60000 80000
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More on 80/20: PQRS

e Part of ‘self-* storage’ project

H

& —_
" s -

Waterioo 2006 cylinder#
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More on 80/20: PQRS

* Part of ‘self-* storage’ project
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Overview

* Goals/ motivation: find patterns in large datasets:

— (A) Sensor data
— (B) network/graph data

* Solutions: self-similarity and power laws
— sensor/traffic data

ﬂ — network/graph data

¢ Discussion

School of Computer Science
Carnegie Mellon

Problem #2 - topology

How does the Internet look like? Any rules?
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Patterns? Patterns?
e avg degree is, say 3.3 e avg degree is, say 3.3
count . count .
u ¢ pick a node at random " * pick a node at random
— guess its degree, — guess its degree,
f exactly (-> “mode”) exactly (-> “mode”)
ﬂ) o A ll!
8 S
L]
A A
avg: 3.3 degree avg: 3.3 degree
‘Waterloo, 2006 C. Faloutsos 39 Waterloo, 2006 C. Faloutsos 40
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.
Patterns? Solution#2: Rank exponent R

e avg degree is, say 3.3
count e pick a node at random
- what is the degree
you expect it to have?

o Arlll
* A’:very skewed distr.

¢ Corollary: the mean is
meaningless!

¢ (and std -> infinity (!))

A
avg: 3.3

degree
Waterloo, 2006
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* Al: Power law in the degree distribution
[SIGCOMM99]

internet domains

« att.com
log(degree) ”Z oo NTE RS Dy
ibm.com N
© -0.82
. log(rank)
Waterloo, 2006 C. Faloutsos 42
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Solution#2’: Eigen Exponent E

Eigenvalue

P3Orgon +
exp(4.3031) “x~{-047738) ——

Exponent = slope

E=-048

May 2001

1 10 100

Rank of decreasing eigenvalue

* A2: power law in the eigenvalues of the adjacency

matrix

Waterloo, 2006 C. Faloutsos 43
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Power laws - discussion

* do they hold, over time?

* do they hold on other graphs/domains?

Waterloo, 2006 C. Faloutsos 44
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Power laws - discussion

¢ do they hold, over time?

* Yes! for multiple years [Siganos+]

* do they hold on other graphs/domains?

* Yes!
— web sites and links [Tomkins+], [Barabasi+]
— peer-to-peer graphs (gnutella-style)
— who-trusts-whom (epinions.com)

‘Waterloo, 2006 C. Faloutsos 45
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log(degre; AL
ibm.com

Time Evolution: rank R

= 1og(ra
-0.5
E 06 200 400 600 800 Domai"
5 level
a -0.7
E; IR SO JU0. e S
~ -0.8
G
o -0.9
-1
Instances in time: Nov'97 and on
e The rank exponent has not changed!
Waterloo, ZfL§lganos+] C. Faloutsos 46

count [Jovanovic+]

I = o ]
{a) Ginutella snapshot from Dec. 25, 2000 ([r-0.94)

degree

* Number of immediate peers (= degree), follows a
power-law

Waterloo, 2006 C. Faloutsos 47

of Computer Science
e Mellon

epinions.com
count * who-trusts-whom
o [Richardson +
ol i Domingos, KDD
o \ 2001]

(out) degree

Waterloo, 2006 C. Faloutsos 48
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Why care about these patterns?

¢ better graph generators [BRITE, INET]
— for simulations
— extrapolations

e ‘abnormal’ graph and subgraph detection

8
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Recent discoveries [KDD’05]

* How do graphs evolve?

* degree-exponent seems constant - anything
else?

Waterloo, 2006 C. Faloutsos 50
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Evolution of diameter?

¢ Prior analysis, on power-law-like graphs,
hints that

diameter ~ O(log(N)) or
diameter ~ O( log(log(N)))
* i.e.., slowly increasing with network size
* Q: What is happening, in reality?

‘Waterloo, 2006 C. Faloutsos 51
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Evolution of diameter?

* Prior analysis, on power-law-like graphs,
hints that
diameter ~ O(log(N)) or
diameter ~ O( log(log(N)))
* i.e.., slowly increasing with network size
* Q: What is happening, in reality?

A: It shrinks(!!), towards a constant value

Waterloo, 2006 C. Faloutsos 52
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Shrinking diameter

[Leskovec+05a] diameter

« Citations among physics 0
papers
e llyrs; @ 2003:
— 29,555 papers
— 352,807 citations
* For each month M, create a
graph of all citations up to
month M ez o0 1o 1060 2000 2002 2004

Time fyears]

Effsctis diameter

(a) arXiv citation graph

time

Waterloo, 2006 C. Faloutsos 53
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Shrinking diameter

¢ Authors &
publications
* 1992 "
— 318 nodes
— 272 edges :
. 2002 ‘
— 60,000 nodes
« 20,000 authors e -
* 38,000 papers (b) Affiliation network
— 133,000 edges

Waterloo, 2006 C. Faloutsos 54
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Shrinking diameter

* Patents & citations
* 1975

— 334,000 nodes

— 676,000 edges
* 1999

— 2.9 million nodes

— 16.5 million edges

¢ Eachyearisa
datapoint

(¢) Patents

Waterloo, 2006 C. Faloutsos 55
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Shrinking diameter

e Autonomous

systems diameter:
e 1997

— 3,000 nodes

— 10,000 edges
* 2000

— 6,000 nodes

— 26,000 edges
e One graph per day N

Waterloo, 2006 C. Faloutsos 56
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Temporal evolution of graphs

* N(t) nodes; E(t) edges at time t
* suppose that
N(t+1) = 2 * N(t)
* QQ: what is your guess for
E(t+1) =?2 * E(t)

‘Waterloo, 2006 C. Faloutsos 57

P S
Temporal evolution of graphs

* N(t) nodes; E(t) edges at time t
* suppose that
N(t+1) = 2 * N(t)
* Q: what is your guess for
E(t+1) =2)* E(t)
e A: over-doubled!

Waterloo, 2006 C. Faloutsos 58

Temporal evolution of graphs

¢ A: over-doubled - but obeying:
| E)~N@e  forant |
where 1<a<2

Waterloo, 2006 C. Faloutsos 59

Densification Power Law

ArXiv: Physics papers
and their citations
E®

z

Waterloo, 2006 C. Faloutsos 60
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Densification Power Law

ArXiv: Physics papers
and their citations

10° 10"
N o oded
(a) arXiv

N(®)

Waterloo, 2006 C. Faloutsos 61
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Densification Power Law

ArXiv: Physics papers

and their citations |
E®

Waterloo, 2006 C. Faloutsos 62
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Densification Power Law

U.S. Patents, citing each
other

N

(b) Patents

‘Waterloo, 2006 C. Faloutsos 63
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Densification Power Law

Autonomous Systems

(c) Autonomous Systems

N()

Waterloo, 2006 C. Faloutsos 64
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Densification Power Law

ArXiv: authors & papers

1o’

E(t) .

(d) Affiliation network
N(©)

Waterloo, 2006 C. Faloutsos 65
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Outline

* problems
¢ Fractals
e Solutions

= . Discussion
— what else can they solve?
— how frequent are fractals?

Waterloo, 2006 C. Faloutsos 66
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What else can they solve?

mm) - separability [KDD’02] «—— spatial d.m.
e forecasting [CIKM’02]
¢ dimensionality reduction [SBBD’00]
e non-linear axis scaling [KDD’02]

e disk trace modeling [PEVA’02]

* selectivity of spatial/multimedia queries
[PODS’94, VLDB’95, ICDE’00]

Waterloo, 2006 C. Faloutsos 67

Ed, Thab, Tamef
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Problem #3 - spatial d.m.

Galaxies (Sloan Digital Sky Survey w/ B.

Nichol) - ‘spiral’ and ‘elliptical’
galaxies

- patterns? (not Gaussian; not
uniform)

-attraction/repulsion?

- separability??

Waterloo, 2006 C. Faloutsos 68
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Solution#3: spatial d.m.

. cors CORRELATION INTEGRAL!
log(#pairs within <=r )

1e+10
"ell-ell.points.ns"

ol BT | 18 slope
10407 | - plateau!
16406 | ell-cll - repulsion!
100000 F
10000 | PSP

1000 |-

w0f N LS

10 foaasasassd

1
{e-0816-0710.0616.080.00010.001 001 01 1 10 100 108(X)
‘Waterloo, 2006 C. Faloutsos 69
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Solution#3: spatial d.m.

log(#pairs within <=r ) [w/ Seeger, Traina, Traina, SIGMODO0]
1e+10

"ell-ell.point
1e+09 "spi-spi.point;

1e+08

- 1.8 slope

16407 el - plateau!
16406 eli-e 1 -repulsion!

100000

spi-spi
10000 | SPI-SP!

1000
100 |
10

\ spi-ell

1
16-0816-0716-0616-080.0000.001 001 01 110 100 108()
Waterloo, 2006 C. Faloutsos 70
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Solution#3: spatial d.m.

1e+10 rl
16409 “spispipoints.ns”
s i 0 ot pormga e B N
tes07 r2 I ° *
L LY
16406 .
100000
10000 .
1000 oo o ®
100 o ©®
0
s Y v
fedsreqriederecomontor o 01 1+ 0 w0 Heuristic on choosing # of
2 rl clusters
Waterloo, 2006 C. Faloutsos 71
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Solution#3: spatial d.m.

log(#pairs within <=r )
1e+10 —

1e+09 - 1.8 slope

1e+08

10407 - plateau!

ell-ell s

16406 1 -repulsion!

100000 L. / 1
10000 | SP'SP!
1000
100 |

10

1 L L L L L L L L L
1e-081e-071e-061e-050.00010.001 0.01 0.1 1 10 100 lOg(l‘)
Waterloo, 2006 C. Faloutsos 72
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What else can they solve?

* separability [KDD’02]
e forecasting [CIKM’02]
- . dimensionality reduction [SBBD’00]
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Problem#4: dim. reduction

cc
* given attributes X, ... X,

— possibly, non-linearly correlated ° 600

e drop the useless ones

Fractals & power laws:

appear in numerous settings:

e medical

» geographical / geological

* social

e computer-system related

¢ <and many-many more! see [Mandelbrot]>

Waterloo, 2006 C. Faloutsos 77

mpg
e non-linear axis scaling [KDD’02]
e disk trace modeling [PEVA’02]
* selectivity of spatial/multimedia queries
[PODS’94, VLDB’95, ICDE’00]
Waterloo, 2006 C. Faloutsos 73 Waterloo, 2006 C. Faloutsos 74
- [ St o e
Problem#4: dim. reduction Outline
cc
e given attributes x,, ... X,  problems
— possibly, non-linearly correlated } j 799 e Fractals
e drop the useless ones s « Solutions
* Discussion
: why?
Q y . N ) ) , — what else can they solve?
A: to avoid the ‘dimensionality curse’) mm - how frequent are fractals?
Solution: keep on dropping attributes, until )
the f.d. changes! [w/ Traina+, SBBD’00]
‘Waterloo, 2006 C. Faloutsos 75 Waterloo, 2006 C. Faloutsos 76
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Fractals: Brain scans

* brain-scans
Log(#octants)

16

15

1

2

Waterloo, 2006 C. Faloutsos octree levels ¢
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More fractals
* periphery of malignant tumors: ~1.5

* benign: ~1.3
e [Burdet+]

Waterloo, 2006 C. Faloutsos 79
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More fractals:

e cardiovascular system: 3 (!) lungs: ~2.9

Waterloo, 2006 C. Faloutsos 80
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Fractals & power laws:

appear in numerous settings:
* medical

* geographical / geological
* social

e computer-system related

‘Waterloo, 2006 C. Faloutsos 81

[ St s St
More fractals:

e Coastlines: 1.2-1.58

Waterloo, 2006 C. Faloutsos 82
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642
E= elink
TroneHs
Molde, } %;térsun {
s nges
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He Oslog slppsala
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More fractals:

¢ the fractal dimension for the Amazon river
is 1.85 (Nile: 1.4)

[ems. gphyb unc.edu/nonlinear/fractals/examples.html]

Waterloo, 2006 C. Faloutsos 84
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More fractals:

e the fractal dimension for the Amazon river
is 1.85 (Nile: 1.4)

[ems. gphys.unc‘edu/nonlinear/fractals/gxamples.html]

School of Computer Science
Carnegie Mellon

GIS points

Cross-roads of
Montgomery county:

eany rules?

o TRT 06 lo0sd 2000 fi000.

Waterloo, 2006 C. Faloutsos 85 Waterloo, 2006 C. Faloutsos 86
A ot ot Stence [ St s St
GIS Examples:LLB county
log(#pairs(within <= 1)) A: self-similarity: * Long Beach county of CA (road end-points)
SLoPEe LSt e intrinsic dim. = 1.51
° 1 log(#pairs)
£ 151
3
-6
0 2 4 6 B 0
log(y log( r )
Waterloo, 2006 C. Faloutsos 87 Waterloo, 2006 C. Faloutsos 88
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More power laws: areas — More power laws: areas —
’ ’
Korcak’s law Korcak’s law
log(count( >= area))
Scandinavian lakes »
Any pattern? i
: Scandinavian lakes [ |
) area vs
complementary R
cumulative count
(log-log axes) of : loglarea) 3
Waterloo, 2006 C. Faloutsos 89 Waterloo, 2006 C. Faloutsos 90
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More power laws: Korcak

et g Aotz

log(cbunt( >= area))
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More power laws

» Energy of earthquakes (Gutenberg-Richter
law) [simscience.org]

Waterloo, 2006

Energy
; released log(count)
,
k1 “ ) -~ -
Japan islands; i " e T
area vs cumulative i : e Llsdde L \_M_ 1L T
count (log-log axes) log(area) day Magnitude = log(energy)
Waterloo, 2006 C. Faloutsos 91 Waterloo, 2006 C. Faloutsos 92
e e S [ et ot e
Af : Zipf’
amous power law: Zipf’s
Fractals & power laws:
log(freq) law
. . o000 BIBLE mnkfreq. piot
appear in numerous settings: g A
. foneo ¢ Bible - rank vs.
¢ medical
) ) N frequency (log-log)
* geographical / geological R
. ®
* social ]
* computer-system related R e NN L TRRT " T ”
g ank Rank/frequency plot
log(rank)
‘Waterloo, 2006 C. Faloutsos 93 Waterloo, 2006 C. Faloutsos 94
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TELCO data SALES data - store#96
count of
customers s count of i )
X products .
; ‘ 5
3
‘best clistomer’ “ajin'n’
Uy 7 W 'l W . * TR— #units sold
Amount of service usage # of service units
. Count-frequency plot for store no. 96.
Count-frequency plot of real and synthetic data
C. Faloutsos 95 Waterloo, 2006 C. Faloutsos 96
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Olympic medals (Sidney’00,
Athens’04):

log(#medals)

25

2 v

[

15 L "!‘“ #athens

1 .'\ 1 sidney
05 Y

0 T -»—

0 05 1 15 2
log( rank)
Waterloo, 2006 C. Faloutsos 97
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Olympic medals (Sidney’00,
Athens’04):

log(#medals)

25

2
151 4 athens
05 ™

0 ' -

0 05 1 15 2
log( rank)
Waterloo, 2006 C. Faloutsos 98
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Even more power laws:

¢ Income distribution (Pareto’s law)
e size of firms
e publication counts (Lotka’s law)

‘Waterloo, 2006 C. Faloutsos 99

P e S
Even more power laws:
library science (Lotka’s law of publication

count); and citation counts:
(citeseer.nj.nec.com 6/2001)

log(count)

Ilman

N

log(#citations)

Waterloo, 2006 C. Faloutsos 100

Even more power laws:
* web hit counts [w/ A. Montgomery]

Web Site Traffi

log(¢ount)
\\k “ydhoo.com”
W /10 g(freq)
N its Wbt Rcaie”
Waterloo, 2006 C. Faloutsos 101

Fractals & power laws:

appear in numerous settings:
* medical

» geographical / geological
* social

* computer-system related

Waterloo, 2006 C. Faloutsos 102
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Power laws, cont’d

¢ In- and out-degree distribution of web sites
[Barabasi], [[IBM-CLEVER]

log indegree

from [Ravi Kumar,
Prabhakar Raghavan,
Sridhar Rajagopalan,
Andrew Tomkins ]

- log(freq)
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Power laws, cont’d

* In- and out-degree distribution of web sites
[Barabasi], [[BM-CLEVER]

log(freq)
from [Ravi Kumar,
Prabhakar Raghavan,
Sridhar Rajagopalan,
Andrew Tomkins ] log indegree
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Power laws, cont’d

¢ In- and out-degree distribution of web sites
[Barabasi], [[BM-CLEVER]

log(freq)

Q: ‘how can we use
these power laws?’

log indegree
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“Foiled by power law”

e [Broder+, WWW’00]

(log) count
In-degree (total, remote-snly> distr.
Lerio

1evos |-
1ov0s
u
8 tever Lo
S revae [
ERULLILRS
§ 18088 [
H
S tooo [
100 |-
0

1

1 18 188 ] 198898
in-degroe
(log) in-degree
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“Foiled by power law”

e [Broder+, WWW’00]

(log) count

1e+18
1e+a3 [ Tetal in-degree @

ee Ctotals remote-only) distr.

“The anomalous bump at 120
on the x-axis

te+ds [ Remote-only in-degree -

I peea is due a large clique

% 100000 | ¢

5 wooon | formed by a single spammer”
£ ieem [

100
18

1

Pra— 100000
in-dearee
(log) in-degree
Waterloo, 2006
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Power laws, cont’d

* In- and out-degree distribution of web sites
[Barabasi], [[BM-CLEVER]

* length of file transfers [Crovella+Bestavros
‘96]

* duration of UNIX jobs

Waterloo, 2006 C. Faloutsos 108
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Additional projects

¢ Find anomalies in traffic matrices [under
review|

¢ Find correlations in sensor/stream data

School of Computer Science
Carnegie Mellon

Conclusions

* Fascinating problems in Data Mining: find
patterns in

— sensors/streams

[VLDB’05] — graphs/networks

— Chlorine measurements, with Civ. Eng.

— temperature measurements (INTEL/MIT)
* Virus propagation (SIS, SIR) [Wang+, 03]
* Graph partitioning [Chakrabarti+, KDD’04]
Waterloo, 2006 C. Faloutsos 109 Waterloo, 2006 C. Faloutsos 110

E P [ gt e S
Conclusions - cont’d Resources

New tools for Data Mining: self-similarity &
power laws: appear in many cases

Good news: “2:}

lead to skewed distributions * ‘correlation integral’
for separability

* rank/frequency plots
e 80-20 (multifractals)

(Hurst exponent,

strange attractors,
renormalization theory, 111
++)

Bad news:

(no Gaussian, Poisson,
uniformity, independence,
mean, variance)

‘Waterloo, 2006 C. Faloutsos

e Manfred Schroeder “Chaos, Fractals and
Power Laws”, 1991
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Thank you!

Contact info:
christos <at> cs.cmu.edu
www. c¢s.cmu.edu /~christos

(w/ papers, datasets, code for fractal dimension
estimation, etc)
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