Data Mining using Fractals and Power laws		
	tos Fa	
	Mellon	
Westoro, 206	c. Framesos	,

THANK YOU!

- Prof. Ed Chan
- Debbie Mustin

Overview

- Goals/ motivation: find patterns in large datasets:
- (A) Sensor data
- (B) network/graph data
- Solutions: self-similarity and power laws
- Discussion

School of Computer Scie

Applications of sensors/streams

- 'Smart house': monitoring temperature, humidity etc
- Financial, sales, economic series

School of Computer

Applications of sensors/streams

- 'Smart house': monitoring temperature, humidity etc
- Financial, sales, economic series

Waterloo, 2006
C. Faloutsos

Self-* Storage (Ganger+)

- "self-*" = self-managing, self-tuning, self-healing, ...
- Goal: 1 petabyte (PB) for CMU researchers
- www.pdl.cmu.edu/SelfStar

Motivation - Applications (cont'd)

- civil/automobile infrastructure
- bridge vibrations [Oppenheim+02]
- road conditions / traffic monitoring

Waterloo, 2006
C. Faloutsos

Web traffic

- [Crovella Bestavros, SIGMETRICS'96]

- "self-*" $=$ self-managing, self-tuning, self-healing, ...

5chool of Compute
 Problem definition

- Given: one or more sequences $x_{1}, x_{2}, \ldots, x_{t}, \ldots ;\left(y_{1}, y_{2}, \ldots, y_{v} \ldots\right)$
- Find
- patterns; clusters; outliers; forecasts;

Problem \#1

\# bytes

- Find patterns, in large datasets

F $\begin{aligned} & \text { School of Compteter Science } \\ & \text { Carnegie Mellon }\end{aligned}$
 Solutions

- New tools: power laws, self-similarity and 'fractals' work, where traditional assumptions fail
- Let's see the details:

$\$ \begin{aligned} & \text { School of Compu } \\ & \text { Carnegie Mellon }\end{aligned}$
 Overview

- Goals/ motivation: find patterns in large datasets:
- (A) Sensor data
- (B) network/graph data
- Solutions: self-similarity and power laws
- Discussion

Overview

- Goals/ motivation: find patterns in large datasets:
- (A) Sensor data
- (B) network/graph data
- Solutions: self-similarity and power laws
- sensor/traffic data
- network/graph data
- Discussion

count

- avg degree is, say 3.3
- pick a node at random - guess its degree, exactly (-> "mode")

F. School of Computer Scienc

Problem \#2 - topology

How does the Internet look like? Any rules?

Fars Chool of Computer Scienc

Power laws - discussion

- do they hold, over time?
- do they hold on other graphs/domains?

Waterloo, 2006
C. Faloutsos

44

5 Chool of Computer Sc

Power laws - discussion

- do they hold, over time?
- Yes! for multiple years [Siganos+]
- do they hold on other graphs/domains?
- Yes!
- web sites and links [Tomkins+], [Barabasi+]
- peer-to-peer graphs (gnutella-style)
- who-trusts-whom (epinions.com)

Waterloo, 2006

Why care about these patterns?

- better graph generators [BRITE, INET]
- for simulations
- extrapolations
- 'abnormal' graph and subgraph detection

Waterloo, 2006

Recent discoveries [KDD'05]

- How do graphs evolve?
- degree-exponent seems constant - anything else?

School of Computer Science
 Evolution of diameter?

- Prior analysis, on power-law-like graphs, hints that

$$
\begin{aligned}
& \text { diameter } \sim \mathrm{O}(\log (\mathrm{~N})) \quad \text { or } \\
& \text { diameter } \sim \mathrm{O}(\log (\log (\mathrm{~N})))
\end{aligned}
$$

- i.e.., slowly increasing with network size
- Q: What is happening, in reality?

Evolution of diameter?

- Prior analysis, on power-law-like graphs, hints that

$$
\begin{aligned}
& \text { diameter } \sim \mathrm{O}(\log (\mathrm{~N})) \quad \text { or } \\
& \text { diameter } \sim \mathrm{O}(\log (\log (\mathrm{~N})))
\end{aligned}
$$

- i.e.., slowly increasing with network size
- Q: What is happening, in reality?
- A: It shrinks(!!), towards a constant value

Shrinking diameter
 School of Compu Carnegie Mellon

[Leskovec+05a]

- Citations among physics papers
- 11yrs; @ 2003:
- 29,555 papers
- 352,807 citations
- For each month M, create a graph of all citations up to month M
diameter

C. Faloutso

Waterloo, 2006
time
\qquad

Shrinking diameter

- Authors \& publications
- 1992
- 318 nodes
- 272 edges
- 2002
- 60,000 nodes
- 20,000 authors
- 38,000 papers

(b) Affiliation network
- 133,000 edges

Waterloo, 2006
C. Faloutsos

2) Canoog of Comput
 Shrinking diameter

- Patents \& citations
- 1975
- 334,000 nodes
- 676,000 edges
- 1999
- 2.9 million nodes
- 16.5 million edges
- Each year is a datapoint

Waterloo, 2006

(c) Patents

5. School of Computer Science

Temporal evolution of graphs

- $\mathrm{N}(\mathrm{t})$ nodes; $\mathrm{E}(\mathrm{t})$ edges at time t
- suppose that

$$
\mathrm{N}(\mathrm{t}+1)=2 * \mathrm{~N}(\mathrm{t})
$$

- Q : what is your guess for

$$
\mathrm{E}(\mathrm{t}+1)=? 2 * \mathrm{E}(\mathrm{t})
$$

Temporal evolution of graphs

- A: over-doubled - but obeying:

where $1<a<2$
\qquad

Outline

- problems
- Fractals
- Solutions
- Discussion
- what else can they solve?
- how frequent are fractals?

Waterloo, 2006
c. Faloutsos

66

School of Computer
 What else can they solve?

- separability [KDD'02]
- forecasting [CIKM'02]
- dimensionality reduction [SBBD'00]
- non-linear axis scaling [KDD’02]
- disk trace modeling [PEVA'02]
- selectivity of spatial/multimedia queries [PODS'94, VLDB'95, ICDE'00]
- ...

Waterloo, 2006

5 Schoo of Computer

Outline
 School of Computer Science Carnegie Mellon

- problems
- Fractals
- Solutions
- Discussion
- what else can they solve?
- how frequent are fractals?

4-4

Problem\#4: dim. reduction

- given attributes $\mathrm{x}_{1}, \ldots \mathrm{x}_{\mathrm{n}}$ - possibly, non-linearly correlated
- drop the useless ones
(Q: why?
A: to avoid the 'dimensionality curse')
Solution: keep on dropping attributes, until the f.d. changes! [w/ Traina+, SBBD'00]

Waterloo, 2006

- given attributes $\mathrm{x}_{1}, \ldots \mathrm{x}_{\mathrm{n}}$
- possibly, non-linearly correlated
- drop the useless ones

School of Computer Scien Carnegie Mellon

Problem\#4: dim. reduction

More fractals

- periphery of malignant tumors: ~ 1.5
- benign: ~1.3
- [Burdet+]

Fractals \& power laws:

appear in numerous settings:

- medical
- geographical / geological
- social
- computer-system related

More fractals:

- Coastlines: 1.2-1.58

Fractals \& power laws:

appear in numerous settings:

- medical
- geographical / geological
- social
- computer-system related

Even more power laws:

- Income distribution (Pareto's law)
- size of firms
- publication counts (Lotka's law)

Even more power laws:

library science (Lotka's law of publication count); and citation counts: (citeseer.nj.nec.com 6/2001)
\log (count)

Fractals \& power laws:

appear in numerous settings:

- medical
- geographical / geological
- social
- computer-system related

Waterloo, 2006
C. Faloutsos 102

FThol of Computer Science

Power laws, cont'd

- In- and out-degree distribution of web sites [Barabasi], [IBM-CLEVER]
from [Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, Andrew Tomkins]

Waterloo, 2006
C. Faloutsos

104

"Foiled by power law"

- [Broder+, WWW'00]
(log) count

(log) in-degree
Waterloo, $2006 \quad$ C. Faloutsos

Power laws, cont'd

- In- and out-degree distribution of web sites [Barabasi], [IBM-CLEVER]
- length of file transfers [Crovella+Bestavros '96]
- duration of UNIX jobs

Additional projects

- Find anomalies in traffic matrices [under review]
- Find correlations in sensor/stream data [VLDB'05]
- Chlorine measurements, with Civ. Eng.
- temperature measurements (INTEL/MIT)
- Virus propagation (SIS, SIR) [Wang+, '03]
- Graph partitioning [Chakrabarti+, KDD’04]

School of Computer Science
Carnegie Mellon
• Manfred Schroeder "Chaos, Fractals and
Power Laws", 1991
Waterloo, 2006

References

- [vldb95] Alberto Belussi and Christos Faloutsos, Estimating the Selectivity of Spatial Queries Using the `Correlation' Fractal Dimension Proc. of VLDB, p. 299310, 1995
- [Broder+'00] Andrei Broder, Ravi Kumar , Farzin Maghoul1, Prabhakar Raghavan, Sridhar Rajagopalan , Raymie Stata, Andrew Tomkins, Janet Wiener, Graph structure in the web, WWW'00
- M. Crovella and A. Bestavros, Self similarity in World wide web traffic: Evidence and possible causes, SIGMETRICS '96.

References

- J. Considine, F. Li, G. Kollios and J. Byers, Approximate Aggregation Techniques for Sensor Databases (ICDE'04, best paper award).
- [pods94] Christos Faloutsos and Ibrahim Kamel, Beyond Uniformity and Independence: Analysis of R-trees Using the Concept of Fractal Dimension, PODS, Minneapolis, MN, May 24-26, 1994, pp. 4-13

References

- [vldb96] Christos Faloutsos, Yossi Matias and Avi Silberschatz, Modeling Skewed Distributions Using Multifractals and the `80-20 Law’ Conf. on Very Large Data Bases (VLDB), Bombay, India, Sept. 1996.
- [sigmod2000] Christos Faloutsos, Bernhard Seeger, Agma J. M. Traina and Caetano Traina Jr., Spatial Join Selectivity Using Power Laws, SIGMOD 2000

References

- [Leskovec 05] Jure Leskovec, Jon M. Kleinberg, Christos Faloutsos: Graphs over time: densification laws, shrinking diameters and possible explanations. KDD 2005: 177-187

References

- [ieeeTN94] W. E. Leland, M.S. Taqqu, W. Willinger, D.V. Wilson, On the Self-Similar Nature of Ethernet Traffic, IEEE Transactions on Networking, 2, 1, pp 1-15, Feb. 1994.
- [brite] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers. BRITE: An Approach to Universal Topology Generation. MASCOTS '01

References

- [icde99] Guido Proietti and Christos Faloutsos, I/O complexity for range queries on region data stored using an R-tree (ICDE'99)
- Stan Sclaroff, Leonid Taycher and Marco La Cascia, "ImageRover: A content-based image browser for the world wide web" Proc. IEEE Workshop on Content-based Access of Image and Video Libraries, pp 2-9, 1997.
Thank you!
Contact info:
christos <at> cs.cmu.edu
www. cs.cmu.edu /~christos of Comppter Science

(w/ papers, datasets, code for fractal dimension
estimation, etc)

Waterloo, 2006
c. Faloutsos

