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Overview

• Goals/ motivation: find patterns in large

datasets:

– (A) Sensor data

– (B) network/graph data

• Solutions: self-similarity and power laws

• Discussion
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Applications of sensors/streams

• ‘Smart house’: monitoring temperature,

humidity etc

• Financial, sales, economic series
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Applications of sensors/streams

• ‘Smart house’: monitoring temperature,

humidity etc

• Financial, sales, economic series

Tamer; Ihab
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Motivation - Applications

• Medical: ECGs +; blood

pressure etc monitoring

• Scientific data: seismological;

astronomical; environment /

anti-pollution; meteorological
Sunspot Data
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Motivation - Applications

(cont’d)

• civil/automobile infrastructure

– bridge vibrations [Oppenheim+02]

–  road conditions / traffic monitoring

Automobile traffic
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Motivation - Applications

(cont’d)

•  Computer systems

– web servers (buffering, prefetching)

– network traffic monitoring

– ...
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Web traffic

• [Crovella Bestavros, SIGMETRICS’96]
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Figure 2: Tra�c Bursts over Four Orders of Magnitude; Upper Left: 1000, Upper Right: 100, Lower Left: 10, and Lower Right:
1 Second Aggegrations. (Actual Transfers)

this e�ect is by visually inspecting time series plots of tra�c
demand.

In Figure 2 we show four time series plots of the WWW
tra�c induced by our reference traces. The plots are produced
by aggregating byte tra�c into discrete bins of 1, 10, 100, or
1000 seconds.

The upper left plot is a complete presentation of the entire
tra�c time series using 1000 second (16.6 minute) bins. The
diurnal cycle of network demand is clearly evident, and day
to day activity shows noticeable bursts. However, even within
the active portion of a single day there is signi�cant burstiness;
this is shown in the upper right plot, which uses a 100 second
timescale and is taken from a typical day in the middle of the
dataset. Finally, the lower left plot shows a portion of the 100
second plot, expanded to 10 second detail; and the lower right
plot shows a portion of the lower left expanded to 1 second
detail. These plots show signi�cant bursts occurring at the
second-to-second level.

4.2.2 Statistical Analysis

We used the four methods for assessing self-similarity described
in Section 2: the variance-time plot, the rescaled range (or
R/S) plot, the periodogram plot, and the Whittle estimator.
We concentrated on individual hours from our tra�c series, so
as to provide as nearly a stationary dataset as possible.

To provide an example of these approaches, analysis of a
single hour (4pm to 5pm, Thursday 5 Feb 1995) is shown in
Figure 3. The �gure shows plots for the three graphical meth-
ods: variance-time (upper left), rescaled range (upper right),
and periodogram (lower center). The variance-time plot is lin-

ear and shows a slope that is distinctly di�erent from -1 (which
is shown for comparison); the slope is estimated using regres-
sion as -0.48, yielding an estimate for H of 0.76. The R/S plot
shows an asymptotic slope that is di�erent from 0.5 and from
1.0 (shown for comparision); it is estimated using regression
as 0.75, which is also the corresponding estimate of H. The
periodogram plot shows a slope of -0.66 (the regression line is
shown), yielding an estimate of H as 0.83. Finally, the Whittle
estimator for this dataset (not a graphical method) yields an
estimate of H = 0:82 with a 95% con�dence interval of (0.77,
0.87).

As discussed in Section 2.1, the Whittle estimator is the
only method that yields con�dence intervals on H, but short-
range dependence in the timeseries can introduce inaccura-
cies in its results. These inaccuracies are minimized by m-
aggregating the timeseries for successively large values of m,
and looking for a value of H around which the Whittle esti-
mator stabilizes.

The results of this method for four busy hours are shown in
Figure 4. Each hour is shown in one plot, from the busiest hour
in the upper left to the least busy hour in the lower right. In
these �gures the solid line is the value of the Whittle estimate
of H as a function of the aggregation level m of the dataset.
The upper and lower dotted lines are the limits of the 95%
con�dence interval on H. The three level lines represent the
estimate of H for the unaggregated dataset as given by the
variance-time, R-S, and periodogram methods.

The �gure shows that for each dataset, the estimate of H
stays relatively consistent as the aggregation level is increased,
and that the estimates given by the three graphical methods
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...

survivable,
self-managing storage

infrastructure

...

a storage brick
(0.5–5 TB)~1 PB

� “self-*” = self-managing, self-tuning, self-healing, …

� Goal: 1 petabyte (PB) for CMU researchers

� www.pdl.cmu.edu/SelfStar

Self-* Storage (Ganger+)
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...

survivable,
self-managing storage

infrastructure

...

a storage brick
(0.5–5 TB)~1 PB

� “self-*” = self-managing, self-tuning, self-healing, …

Self-* Storage (Ganger+)

Ashraf, Ihab, Ken
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Problem definition

• Given: one or more sequences

x1 ,  x2 ,  … ,  xt ,  …; (y1, y2, … , yt, …)

• Find

– patterns; clusters; outliers; forecasts;
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Problem #1

• Find patterns, in large

datasets

time

# bytes
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Problem #1

• Find patterns, in large

datasets

time

# bytes

Poisson

indep.,

ident. distr
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Problem #1

• Find patterns, in large

datasets

time

# bytes

Poisson

indep.,

ident. distr
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Problem #1

• Find patterns, in large

datasets

time

# bytes

Poisson

indep.,

ident. distr

Q: Then, how to generate

such bursty traffic?
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Overview

• Goals/ motivation: find patterns in large datasets:

– (A) Sensor data

– (B) network/graph data

• Solutions: self-similarity and power laws

• Discussion
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Problem #2 - network and

graph mining

• How does the Internet look like?

• How does the web look like?

• What constitutes a ‘normal’ social

network?

• What is the ‘network value’ of a

customer?

• which gene/species affects the others

the most?
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Network and graph mining

Food Web
[Martinez ’91]

Protein Interactions
[genomebiology.com]

Friendship Network
[Moody ’01]

Graphs are everywhere!
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Problem#2

Given a graph:

• which node to market-to /

defend / immunize first?

• Are there un-natural sub-

graphs? (eg., criminals’ rings)?

[from Lumeta: ISPs 6/1999]
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Solutions

• New tools: power laws, self-similarity and

‘fractals’ work, where traditional

assumptions fail

• Let’s see the details:

Waterloo, 2006 C. Faloutsos 23

School of Computer Science

Carnegie Mellon

Overview

• Goals/ motivation: find patterns in large

datasets:

– (A) Sensor data

– (B) network/graph data

• Solutions: self-similarity and power laws

• Discussion
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What is a fractal?

= self-similar point set, e.g., Sierpinski triangle:

...
zero area: (3/4)^inf

infinite length!

(4/3)^inf

Q: What is its dimensionality??
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What is a fractal?

= self-similar point set, e.g., Sierpinski triangle:

...
zero area: (3/4)^inf

infinite length!

(4/3)^inf

Q: What is its dimensionality??

A: log3 / log2 = 1.58 (!?!)
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Intrinsic (‘fractal’) dimension

• Q: fractal dimension

of a line?

• Q: fd of a plane?
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Intrinsic (‘fractal’) dimension

• Q: fractal dimension
of a line?

• A: nn ( <= r ) ~ r^1

(‘power law’: y=x^a)

• Q: fd of a plane?

• A: nn ( <= r ) ~ r^2

fd== slope of (log(nn)
vs.. log(r) )
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Sierpinsky triangle

log( r )

log(#pairs 

within <=r )

1.58

== ‘correlation integral’

= CDF of pairwise distances
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Observations: Fractals <->

power laws

Closely related:

• fractals <=>

• self-similarity <=>

• scale-free <=>

• power laws ( y= xa ;

F=K r-2)

• (vs y=e-ax or y=xa+b)
log( r )

log(#pairs 

within <=r )

1.58
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Outline

• Problems

• Self-similarity and power laws

• Solutions to posed problems

• Discussion



6

Waterloo, 2006 C. Faloutsos 31

School of Computer Science

Carnegie Mellon

time

#bytes

Solution #1: traffic

• disk traces: self-similar: (also: [Leland+94])

• How to generate such traffic?
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Solution #1: traffic

• disk traces (80-20 ‘law’) – ‘multifractals’

time

#bytes

20% 80%
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80-20 / multifractals
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80-20 / multifractals

20
• p ; (1-p) in general

• yes, there are

dependencies

80
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More on 80/20: PQRS

• Part of ‘self-* storage’ project

time

cylinder# Waterloo, 2006 C. Faloutsos 36
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More on 80/20: PQRS

• Part of ‘self-* storage’ project

p q

r s

q

r s
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Overview

• Goals/ motivation: find patterns in large datasets:

– (A) Sensor data

– (B) network/graph data

• Solutions: self-similarity and power laws

– sensor/traffic data

– network/graph data

• Discussion
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Problem #2 - topology

How does the Internet look like? Any rules?
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Patterns?

• avg degree is, say 3.3

• pick a node at random

– guess its degree,

exactly (-> “mode”)

degree

count

avg: 3.3
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Patterns?

• avg degree is, say 3.3

• pick a node at random

– guess its degree,

exactly (-> “mode”)

• A: 1!!

degree

count

avg: 3.3
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Patterns?

• avg degree is, say 3.3

• pick a node at random
- what is the degree
you expect it to have?

• A: 1!!

• A’: very skewed distr.

• Corollary: the mean is
meaningless!

• (and std -> infinity (!))

degree

count

avg: 3.3
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Solution#2: Rank exponent R
• A1: Power law in the degree distribution

[SIGCOMM99]

internet domains

log(rank)

log(degree)

-0.82

att.com

ibm.com
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Solution#2’: Eigen Exponent E

• A2: power law in the eigenvalues of the adjacency
matrix

E = -0.48

Exponent = slope

Eigenvalue

Rank of decreasing eigenvalue

May 2001
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Power laws - discussion

• do they hold, over time?

• do they hold on other graphs/domains?
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Power laws - discussion

• do they hold, over time?

• Yes! for multiple years [Siganos+]

• do they hold on other graphs/domains?

• Yes!

– web sites and links [Tomkins+], [Barabasi+]

– peer-to-peer graphs (gnutella-style)

– who-trusts-whom (epinions.com)
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Time Evolution: rank R
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• The rank exponent has not changed!

[Siganos+]

Domain

level

log(rank)

log(degree)

-
0.82
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The Peer-to-Peer Topology

• Number of immediate peers (= degree), follows a

power-law

[Jovanovic+]

degree

count
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epinions.com

• who-trusts-whom

[Richardson +

Domingos, KDD

2001]

(out) degree

count
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Why care about these patterns?

• better graph generators [BRITE, INET]

– for simulations

– extrapolations

• ‘abnormal’ graph and subgraph detection
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Recent discoveries [KDD’05]

• How do graphs evolve?

• degree-exponent seems constant - anything

else?
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Evolution of diameter?

• Prior analysis, on power-law-like graphs,

hints that

diameter ~ O(log(N))     or

diameter ~ O( log(log(N)))

• i.e.., slowly increasing with network size

• Q: What is happening, in reality?
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Evolution of diameter?

• Prior analysis, on power-law-like graphs,

hints that

diameter ~ O(log(N))     or

diameter ~ O( log(log(N)))

• i.e.., slowly increasing with network size

• Q: What is happening, in reality?

• A: It shrinks(!!), towards a constant value
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Shrinking diameter

[Leskovec+05a]

• Citations among physics
papers

• 11yrs; @ 2003:

– 29,555 papers

– 352,807 citations

• For each month M, create a
graph of all citations up to
month M

time

diameter
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Shrinking diameter
• Authors &

publications

• 1992

– 318 nodes

– 272 edges

• 2002

– 60,000 nodes

• 20,000 authors

• 38,000 papers

– 133,000 edges
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Shrinking diameter

• Patents & citations

• 1975

– 334,000 nodes

– 676,000 edges

• 1999

– 2.9 million nodes

– 16.5 million edges

• Each year is a

datapoint
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Shrinking diameter

• Autonomous

systems

• 1997

– 3,000 nodes

– 10,000 edges

• 2000

– 6,000 nodes

– 26,000 edges

• One graph per day N

diameter
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Temporal evolution of graphs

• N(t) nodes; E(t) edges at time t

• suppose that

N(t+1) = 2 * N(t)

• Q: what is your guess for

E(t+1) =? 2 * E(t)
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Temporal evolution of graphs

• N(t) nodes; E(t) edges at time t

• suppose that

N(t+1) = 2 * N(t)

• Q: what is your guess for

E(t+1) =? 2 * E(t)

• A: over-doubled!
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Temporal evolution of graphs

• A: over-doubled - but obeying:

E(t) ~ N(t)a            for all t

where 1<a<2
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Densification Power Law

ArXiv: Physics papers

and their citations

1.69

N(t)

E(t)
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Densification Power Law

ArXiv: Physics papers

and their citations

1.69

N(t)

E(t)

‘tree’

1
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Densification Power Law

ArXiv: Physics papers

and their citations

1.69

N(t)

E(t)

‘clique’

2
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Densification Power Law

U.S. Patents, citing each

other

1.66

N(t)

E(t)
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Densification Power Law

Autonomous Systems

1.18

N(t)

E(t)
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Densification Power Law

ArXiv: authors & papers

1.15

N(t)

E(t)
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Outline

• problems

• Fractals

• Solutions

• Discussion

– what else can they solve?

– how frequent are fractals?
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What else can they solve?

• separability [KDD’02]

• forecasting [CIKM’02]

• dimensionality reduction [SBBD’00]

• non-linear axis scaling [KDD’02]

• disk trace modeling [PEVA’02]

• selectivity of spatial/multimedia queries

[PODS’94, VLDB’95, ICDE’00]

• ...

spatial d.m. 

Ed, Ihab, Tamer
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Problem #3 - spatial d.m.

Galaxies (Sloan Digital Sky Survey w/ B.

Nichol)
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"elliptical.cut.dat"
"spiral.cut.dat"

- ‘spiral’ and ‘elliptical’

galaxies

- patterns? (not Gaussian; not

uniform)

-attraction/repulsion?

- separability??
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Solution#3: spatial d.m.
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ell-ell

- 1.8 slope

- plateau!

- repulsion!

CORRELATION INTEGRAL!
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Solution#3: spatial d.m.
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- 1.8 slope

- plateau!

- repulsion!

[w/ Seeger, Traina, Traina, SIGMOD00]
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Solution#3: spatial d.m.
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Heuristic on choosing # of

clusters
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Solution#3: spatial d.m.
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What else can they solve?

• separability [KDD’02]

• forecasting [CIKM’02]

• dimensionality reduction [SBBD’00]

• non-linear axis scaling [KDD’02]

• disk trace modeling [PEVA’02]

• selectivity of spatial/multimedia queries

[PODS’94, VLDB’95, ICDE’00]

• ...
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Problem#4: dim. reduction

• given attributes x1, ... xn

– possibly, non-linearly correlated

• drop the useless ones mpg

cc
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Problem#4: dim. reduction

• given attributes x1, ... xn

– possibly, non-linearly correlated

• drop the useless ones

(Q: why?

  A: to avoid the ‘dimensionality curse’)

Solution: keep on dropping attributes, until
the f.d. changes! [w/ Traina+, SBBD’00]

mpg

cc
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Outline

• problems

• Fractals

• Solutions

• Discussion

– what else can they solve?

– how frequent are fractals?
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Fractals & power laws:

appear in numerous settings:

• medical

• geographical / geological

• social

• computer-system related

• <and many-many more! see [Mandelbrot]>

Waterloo, 2006 C. Faloutsos 78

School of Computer Science

Carnegie Mellon

Fractals: Brain scans

• brain-scans
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More fractals

• periphery of malignant tumors: ~1.5

• benign: ~1.3

• [Burdet+]

Waterloo, 2006 C. Faloutsos 80

School of Computer Science

Carnegie Mellon

More fractals:

• cardiovascular system: 3 (!) lungs: ~2.9
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Fractals & power laws:

appear in numerous settings:

• medical

• geographical / geological

• social

• computer-system related
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More fractals:

• Coastlines: 1.2-1.58

1 1.1

1.3
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More fractals:

• the fractal dimension for the Amazon river

is 1.85 (Nile: 1.4)

[ems.gphys.unc.edu/nonlinear/fractals/examples.html]
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More fractals:

• the fractal dimension for the Amazon river

is 1.85 (Nile: 1.4)

[ems.gphys.unc.edu/nonlinear/fractals/examples.html]
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Cross-roads of

Montgomery county:

•any rules?

GIS points
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GIS

A: self-similarity:

• intrinsic dim. = 1.51

log( r )

log(#pairs(within <= r))

1.51
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Examples:LB county

• Long Beach county of CA (road end-points)

1.7

log(r)

log(#pairs)
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More power laws: areas –

Korcak’s law

Scandinavian lakes

Any pattern?
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More power laws: areas –

Korcak’s law

Scandinavian lakes

area vs

complementary

cumulative count
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More power laws: Korcak
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Area distribution of Japan Archipelago

Japan islands;

area vs cumulative

count (log-log axes) log(area)

log(count( >= area))

Waterloo, 2006 C. Faloutsos 92

School of Computer Science

Carnegie Mellon

More power laws

•  Energy of earthquakes (Gutenberg-Richter

law) [simscience.org]

log(count)

Magnitude = log(energy)day

Energy

released
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Fractals & power laws:

appear in numerous settings:

• medical

• geographical / geological

• social

• computer-system related
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A famous power law: Zipf’s

law

• Bible - rank vs.

frequency (log-log)

log(rank)

log(freq)

“a”

“the”

“Rank/frequency plot”
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TELCO data

# of service units

count of

customers

‘best customer’
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SALES data – store#96

# units sold

count of 

products

“aspirin”
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Olympic medals (Sidney’00,

Athens’04):

log( rank)

log(#medals)
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Olympic medals (Sidney’00,

Athens’04):

log( rank)

log(#medals)
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Even more power laws:

• Income distribution (Pareto’s law)

• size of firms

• publication counts (Lotka’s law)
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Even more power laws:

library science (Lotka’s law of publication

count); and citation counts:

(citeseer.nj.nec.com 6/2001)

1
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log # citations

’cited.pdf’

log(#citations)

log(count)

Ullman
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Even more power laws:

• web hit counts [w/ A. Montgomery]

Web Site Traffic

log(freq)

log(count)

Zipf

“yahoo.com”
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Fractals & power laws:

appear in numerous settings:

• medical

• geographical / geological

• social

• computer-system related
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Power laws, cont’d

• In- and out-degree distribution of web sites

[Barabasi], [IBM-CLEVER]

log indegree

- log(freq)

from [Ravi Kumar, 

Prabhakar Raghavan, 

Sridhar Rajagopalan, 

Andrew Tomkins ]
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Power laws, cont’d

• In- and out-degree distribution of web sites

[Barabasi], [IBM-CLEVER]

log indegree

log(freq)

from [Ravi Kumar, 

Prabhakar Raghavan, 

Sridhar Rajagopalan, 

Andrew Tomkins ]
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Power laws, cont’d

• In- and out-degree distribution of web sites

[Barabasi], [IBM-CLEVER]

log indegree

log(freq)

Q: ‘how can we use

these power laws?’
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“Foiled by power law”

• [Broder+, WWW’00]

(log) in-degree

(log) count
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“Foiled by power law”

• [Broder+, WWW’00]

“The anomalous bump at 120

on the x-axis 

is due a large clique 

formed by a single spammer”

(log) in-degree

(log) count
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Power laws, cont’d

• In- and out-degree distribution of web sites

[Barabasi], [IBM-CLEVER]

• length of  file transfers [Crovella+Bestavros

‘96]

• duration of UNIX jobs
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Additional projects

• Find anomalies in traffic matrices [under
review]

• Find correlations in sensor/stream data
[VLDB’05]

– Chlorine measurements, with Civ. Eng.

– temperature measurements (INTEL/MIT)

• Virus propagation (SIS, SIR) [Wang+, ’03]

• Graph partitioning [Chakrabarti+, KDD’04]
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Conclusions

• Fascinating problems in Data Mining: find

patterns in

– sensors/streams

– graphs/networks
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Conclusions - cont’d

New tools for Data Mining: self-similarity &

power laws: appear in many cases

Bad news:

lead to skewed distributions

(no Gaussian, Poisson,

uniformity, independence,

mean, variance)

Good news:

• ‘correlation integral’
for separability

• rank/frequency plots

• 80-20 (multifractals)
• (Hurst exponent,

• strange attractors,

• renormalization theory,

• ++)
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Resources

• Manfred Schroeder “Chaos, Fractals and

Power Laws”, 1991
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Thank you!

Contact info:

christos <at> cs.cmu.edu

 www. cs.cmu.edu /~christos

(w/ papers, datasets, code for fractal dimension

estimation, etc)


