

Motivation - Applications • Medical: ECGs +; blood pressure etc monitoring • Scientific data: seismological; astronomical; environment / anti-pollution; meteorological

Evolution of diameter? • Prior analysis, on power-law-like graphs, hints that diameter ~ O(log(N)) or diameter ~ O(log(log(N))) • i.e.., slowly increasing with network size • Q: What is happening, in reality?

Temporal evolution of graphs

• N(t) nodes; E(t) edges at time t

• suppose that

N(t+1) = 2 * N(t)

• Q: what is your guess for
E(t+1) =? 2 * E(t)

Temporal evolution of graphs

• N(t) nodes; E(t) edges at time t

• suppose that

N(t+1) = 2 * N(t)

• Q: what is your guess for
E(t+1) =? ★ E(t)

• A: over-doubled!

School of Computer Science

Temporal evolution of graphs

• A: over-doubled - but obeying: $E(t) \sim N(t)^a \quad \text{for all } t$ where 1 < a < 2

School of Computer Science Carnegie Mellon

Additional projects

- Find anomalies in traffic matrices [under review]
- Find correlations in sensor/stream data [VLDB'05]
 - Chlorine measurements, with Civ. Eng.
 - temperature measurements (INTEL/MIT)
- Virus propagation (SIS, SIR) [Wang+, '03]
- Graph partitioning [Chakrabarti+, KDD'04]

Waterloo, 2006 C. Faloutsos

Carnegie Mellon

Conclusions

- Fascinating problems in Data Mining: find patterns in
 - sensors/streams
 - graphs/networks

Waterloo, 2006

C. Faloutsos

itsos 110

School of Computer Sci Carnegie Mellon

Conclusions - cont'd

New tools for Data Mining: self-similarity & power laws: appear in **many** cases

Rad news

lead to skewed distributions (no Gausse Pason, uniformity, bendence,

uniformity, mean, var

Waterloo, 2006

o, 2006 C. Faloutsos

Good news:

- 'correlation integral' for separability
- rank/frequency plots
- 80-20 (multifractals)
- (Hurst exponent,
- strange attractors,
- renormalization theory, 111
- ++)

School of Computer Scient Carnegie Mellon

Resources

 Manfred Schroeder "Chaos, Fractals and Power Laws", 1991

Waterloo 2006

os

School of Computer Science

References

- [vldb95] Alberto Belussi and Christos Faloutsos, Estimating the Selectivity of Spatial Queries Using the 'Correlation' Fractal Dimension Proc. of VLDB, p. 299-310, 1995
- [Broder+'00] Andrei Broder, Ravi Kumar, Farzin Maghoull, Prabhakar Raghavan, Sridhar Rajagopalan, Raymie Stata, Andrew Tomkins, Janet Wiener, Graph structure in the web, WWW'00
- M. Crovella and A. Bestavros, Self similarity in World wide web traffic: Evidence and possible causes, SIGMETRICS '96.

Waterloo, 2006

C. Faloutsos

Car negre steam

References

- J. Considine, F. Li, G. Kollios and J. Byers, *Approximate Aggregation Techniques for Sensor Databases* (ICDE'04, best paper award).
- [pods94] Christos Faloutsos and Ibrahim Kamel, Beyond Uniformity and Independence: Analysis of R-trees Using the Concept of Fractal Dimension, PODS, Minneapolis, MN, May 24-26, 1994, pp. 4-13

Waterloo, 2006

C. Faloutsos

References

- [vldb96] Christos Faloutsos, Yossi Matias and Avi Silberschatz, *Modeling Skewed Distributions Using Multifractals and the `80-20 Law'* Conf. on Very Large Data Bases (VLDB), Bombay, India, Sept. 1996.
- [sigmod2000] Christos Faloutsos, Bernhard Seeger, Agma J. M. Traina and Caetano Traina Jr., Spatial Join Selectivity Using Power Laws, SIGMOD 2000

Waterloo, 2006

C. Faloutsos

School of Computer S Carnegie Mellon

References

- [vldb96] Christos Faloutsos and Volker Gaede Analysis of the Z-Ordering Method Using the Hausdorff Fractal Dimension VLD, Bombay, India, Sept. 1996
- [sigcomm99] Michalis Faloutsos, Petros Faloutsos and Christos Faloutsos, What does the Internet look like? Empirical Laws of the Internet Topology, SIGCOMM 1999

erloo, 2006 C. Faloutsos

Carnegie Mellon

References

 [Leskovec 05] Jure Leskovec, Jon M. Kleinberg, Christos Faloutsos: Graphs over time: densification laws, shrinking diameters and possible explanations. KDD 2005: 177-187

Waterloo, 2006

C. Faloutsos

School of Computer Carnegie Mellon

References

- [ieeeTN94] W. E. Leland, M.S. Taqqu, W. Willinger, D.V. Wilson, *On the Self-Similar Nature of Ethernet Traffic*, IEEE Transactions on Networking, 2, 1, pp 1-15, Feb. 1994.
- [brite] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers. BRITE: An Approach to Universal Topology Generation. MASCOTS '01

Waterloo, 2006

C. Faloutsos

School of Computer Science

References

- [icde99] Guido Proietti and Christos Faloutsos, I/O complexity for range queries on region data stored using an R-tree (ICDE'99)
- Stan Sclaroff, Leonid Taycher and Marco La Cascia, "ImageRover: A content-based image browser for the world wide web" Proc. IEEE Workshop on Content-based Access of Image and Video Libraries, pp 2-9, 1997.

Waterloo, 2006

C. Faloutsos

School of Computer Scien Carnegie Mellon

References

 [kdd2001] Agma J. M. Traina, Caetano Traina Jr., Spiros Papadimitriou and Christos Faloutsos: *Tri*plots: Scalable Tools for Multidimensional Data Mining, KDD 2001, San Francisco, CA.

Waterloo, 2006

C. Faloutsos

120

116

School of Computer Science Carnegie Mellon

Thank you!

Contact info:

christos <at> cs.cmu.edu www.cs.cmu.edu /~christos

(w/ papers, datasets, code for fractal dimension estimation, etc)

Waterloo, 2006

C. Faloutsos

121