
1

Optimizing Queries Using Materialized Views:
A Practical, Scalable Solution

Jonathan Goldstein and Per-Åke Larson
Microsoft Research, One Microsoft Way, Redmond, WA 98052

{jongold,palarson}@microsoft.com

Abstract
Materialized views can provide massive improvements in query
processing time, especially for aggregation queries over large ta-
bles. To realize this potential, the query optimizer must know
how and when to exploit materialized views. This paper presents a
fast and scalable algorithm for determining whether part or all of a
query can be computed from materialized views and describes
how it can be incorporated in transformation-based optimizers.
The current version handles views composed of selections, joins
and a final group-by. Optimization remains fully cost based, that
is, a single “best” rewrite is not selected by heuristic rules but
multiple rewrites are generated and the optimizer chooses the best
alternative in the normal way. Experimental results based on an
implementation in Microsoft SQL Server show outstanding per-
formance and scalability. Optimization time increases slowly with
the number of views but remains low even up to a thousand.

Keywords
Materialized views, view matching, query optimization.

1. Introduction
Using materialized views to speed up query processing is an old
idea [10] but only in the last few years has the idea been adopted
in commercial database systems. Recent TPC-R benchmark re-
sults and actual customer experiences show that query processing
time can be improved by orders of magnitude through judicious
use of materialized views. To realize the potential of materialized
views, efficient solutions to three issues are required:

• View design: determining what views to materialize, includ-
ing how to store and index them.

• View maintenance: efficiently updating materialized views
when base tables are updated.

• View exploitation: making efficient use of materialized
views to speed up query processing.

This paper deals with view exploitation in transformation-based
optimizers. Conceptually, an optimizer generates all possible re-
writings of a query expression, estimates their costs, and chooses
the one with the lowest cost. A transformation-based optimizer
generates rewritings by applying local transformation rules on
subexpressions of the query. Applying a rule produces substitute
expressions, equivalent to the original expression. View matching,
that is, computing a subexpression from materialized views, is one
such transformation rule. The view-matching rule invokes a view-
matching algorithm that determines whether the original expres-

sion can be computed from one or more of the existing material-
ized views and, if so, generates substitute expressions. The algo-
rithm may be invoked many times during optimization, each time
on a different subexpression.

The main contributions of this paper are (a) an efficient view-
matching algorithm for views composed of selections, joins and a
final group-by (SPJG views) and (b) a novel index structure (on
view definitions, not view data) that quickly narrows the search to
a small set of candidate views on which view-matching is applied.
The version of the algorithm described here is limited to SPJG
views and produces single-view substitutes. However, these are
not inherent limitations of our approach; the algorithm and the in-
dex structure can be extended to a broader class of views and sub-
stitutes. We briefly discuss possible extensions but the details are
beyond the scope of this paper.

Our view-matching algorithm is fast and scalable. Speed is crucial
because the view-matching algorithm may be called many times
during optimization of a complex query. We also wanted an algo-
rithm able to handle thousands of views efficiently. Many data-
base systems contain hundreds, even thousands, of tables. Such
databases may have hundreds of materialized views. Tools similar
to that described in [1] can also generate large numbers of views.
A smart system might also cache and reuse results of previously
computed queries. Cached results can be treated as temporary ma-
terialized views, easily resulting in thousands of materialized
views. The algorithm was implemented in Microsoft SQL Server,
which uses a transformation-based optimizer based on the Cas-
cades framework [6]. Experiments show outstanding performance
and scalability. Optimization time increases linearly with the
number of views but remains low even up to a thousand.

Integrating view matching through the optimizer’s normal rule
mechanism provides important benefits. Multiple rewrites may be
generated; some exploiting materialized views, some not. All re-
writes participate in the normal cost-based optimization, regard-
less of whether they make use of materialized views. Secondary
indexes, if any, on materialized views are automatically consid-
ered. The optimization time may even be reduced. If a cheap plan
using materialized views is found early in the optimization proc-
ess, it tightens cost bounds resulting in more aggressive pruning.

The rest of the paper is organized as follows. Section 2 describes
the class of materialized views supported and defines the problem
to be solved. Section 3 describes our algorithm for deciding if a
query expression can be computed from a view. Section 4 intro-
duces our index structure. Section 5 presents experimental results
based on our prototype implementation. Related work is discussed
in section 6. Section 7 contains a summary and a brief discussion
of possible extensions.

2. Defining the problem
SQL Server 2000 supports materialized views. They are called in-
dexed views because a materialized view may be indexed in mul-
tiple ways. A view is materialized by creating a unique clustered

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial ad-
vantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
ACM SIGMOD 2001 May 21-24, Santa Barbara, California, USA
©2001 1-58113-332-4/01/05…$5.00

2

index on an existing view. Uniqueness implies that the view out-
put must contain a unique key. This is necessary to guarantee that
views can be updated incrementally. Once the clustered index has
been created, additional secondary indexes can be created. Not all
views are indexable. An indexable view must be defined by a sin-
gle-level SQL statement containing selections, (inner) joins, and
an optional group-by. The FROM clause cannot contain derived
tables, i.e. it must reference base tables, and subqueries are not al-
lowed. The output of an aggregation view must include all group-
ing columns as output columns (because they define the key) and
a count column. Aggregation functions are limited to sum and
count. This is the class of views considered in this paper.

Example 1: This example shows how to create an indexed view,
with an additional secondary index, in SQL Server 2000. All ex-
amples in this paper use the TPC-H/R database.

create view v1 with schemabinding as
select p_partkey, p_name, p_retailprice,
count_big(*) as cnt,
sum(l_extendedprice*l_quantity) as gross_revenue

from dbo.lineitem, dbo.part
where p_partkey < 1000
and p_name like ‘%steel%’
and p_partkey = l_partkey

group by p_partkey, p_name, p_retailprice

create unique clustered index v1_cidx on v1(p_partkey)
create index v1_sidx on v1(gross_revenue, p_name)

The first statement creates the view v1. The phrase “with sche-
mabinding” is required for indexed views. A count_big column is
required in all aggregation views so deletions can be handled in-
crementally (when the count becomes zero, the group is empty
and the row must be deleted). Output columns defined by arithme-
tic or other expressions must be assigned names (using the AS
clause) so that they can be referred to. The second statement ma-
terializes the view and stores the result in a clustered index. Even
though the statement specifies only the (unique) key of the view,
the rows contain all output columns. The final statement creates a
secondary index on the materialized view. �

As outlined in the introduction, a transformation-based optimizer
generates rewrites by recursively applying transformation rules on
relational expressions. View matching is a transformation rule that
is invoked on select-project-join-group-by (SPJG) expressions.
For each expression, we want to find every materialized view
from which the expression can be computed. In this paper, we re-
quire that the expression can be computed from the view alone.
The following is the view-matching problem considered in this
paper.

View Matching with Single-View Substitutes: Given a rela-
tional expression in SPJG form, find all materialized (SPJG)
views from which the expression can be computed and, for each
view found, construct a substitute expression equivalent to the
given expression.

No restrictions are imposed on the overall query. Even though we
consider only single-view substitutes, different views may be used
to evaluate different parts of a query. Whenever the optimizer
finds a SPJG expression the view-matching rule is invoked. All
substitutes produced by view matching participate in cost-based
optimization in the normal way. Furthermore, any secondary in-
dexes defined on a materialized view will be considered automati-
cally in the same way as for base tables.

The algorithm explained in this paper is limited to SPJG subex-
pressions and single-table substitutes. However, this is not an in-

herent limitation of our approach. The algorithm can be extended
to a broader class of input and substitute expressions, for example,
expressions containing unions, outer joins or aggregation with
grouping sets.

3. Computing a query expression from a view
In this section, we describe the tests applied to determine whether
a query expression can be computed from a view and, if it can,
how to construct the substitute expression. The first subsection
deals with join-select-project (SPJ) views and queries assuming
that the view and the query reference the same tables. Views with
extra tables and views with aggregation are covered in separate
subsections. There is no need to consider views with fewer tables
than the query expression. Such views can only be used to com-
pute a subexpression of the query expression. The view-matching
rule will automatically be invoked on every subexpression.

Our algorithm exploits four types of constraints: not-null con-
straints on columns, primary key constraints, uniqueness con-
straints (either explicitly declared or implied by creating a unique
index), and foreign key constraints. We assume that the selection
predicates of view and query expressions have been converted
into conjunctive normal form (CNF). If not, we first convert them
into CNF. We also assume that join elimination has been per-
formed so query and view expressions contain no redundant ta-
bles. (The SQL Server optimizer does this automatically.)

3.1 Join-select-project views and queries
For a SPJ query expression to be computable from a view, the
view must satisfy the following requirements.

1. The view contains all rows needed by the query expression.
Because we are considering only single-view substitutes, this
is an obvious requirement. However, this is not required if
substitutes containing unions of views are considered.

2. All required rows can be selected from the view. Even if all
required rows exist in the view, we may not be able to extract
them correctly. Selection is done by applying a predicate. If
one of the columns required by the predicate is missing from
the view output, the required rows cannot be selected.

3. All output expressions can be computed from the output of
the view.

4. All output rows occur with the correct duplication factor.
SQL is based on bag semantics, that is, a base table or the
output of a SQL expression may contain duplicate rows.
Hence, it is not sufficient that two expressions produce the
same set of rows but any duplicate rows must also occur ex-
actly the same number of times.

Equivalences among columns play an important role in our tests
so we cover this topic first. We then discuss how we ensure that
the requirements above are met, devoting a separate subsection to
each requirement.

3.1.1 Column equivalence classes
Let W =P1 ∧ P2 ∧ … ∧ Pn be the selection predicate (in CNF) of a
SPJ expression. By collecting the appropriate conjuncts, we can
rewrite the predicate as W = PE∧ PNE where PE contains column
equality predicates of the form (Ti. Cp = Tj.Cq) and PNE contains
all remaining conjuncts. Ti and Tj are tables, not necessarily dis-
tinct, and Cp and Cq are column references.

Suppose we evaluate the SPJ expression by computing the Carte-
sian product of the tables, then applying the column-equality
predicates in PE, then applying the predicates in PNE, and finally
computing the expressions in the output list. After the column-

3

equality predicates have been applied, some columns are inter-
changeable in both the PNE predicates and the output columns.
This ability to reroute column references among equivalent col-
umns will be important later on.

Knowledge about column equivalences can be captured com-
pactly by computing a set of equivalence classes based on the col-
umn equality predicates in PE. An equivalence class is a set of
columns that are known to be equal. Computing the equivalence
classes is straightforward. Begin with each column of the tables
referenced by the expression in a separate set. Then loop through
the column equality predicates in any order. For each (Ti.Cp =
Tj.Cq), find the set containing Ti.Cp and the set containing Tj.Cq. If
they are in different sets merge the two sets, otherwise do nothing.
The sets left at the end is the desired collection of equivalence
classes, including trivial classes consisting of a single column.

3.1.2 Do all required rows exist in the view?
Assume that the query expression and the view expression refer-
ence the tables T1, T2,…, Tm. Let Wq denote the predicate in the
where-clause of the query expression and Wv the predicate of the
view expression. Determining whether the view contains all rows
required by the query expression is, in principle, easy. All we
need to show is that the output of the expression (select *
from T1,T2,…,Tm where Wq) produces a subset of the out-
put of (select * from T1,T2, …,Tm where Wv) for all
valid instances of tables T1, T2, …, Tm. This is guaranteed to hold
if Wq ⇒ Wv, where ‘⇒’ denotes logical implication.

Therefore we need an algorithm to decide whether Wq ⇒ Wv

holds. We rewrite the predicates as Wq = Pq,1∧ Pq,2∧ …∧ Pq,m and
Wv = Pv,1∧ Pv,2∧ …∧ Pv,n. A simple conservative algorithm is to
check that every conjunct Pv,i in Wv, matches a conjunct Pv,i in Wq.
There are several ways to decide whether two conjuncts match.
For instance, the matching can be purely syntactic.This can be
implemented by converting each conjunct into a string, i.e., the
SQL text version of the conjunct, and then matching the strings.
The drawback with this approach is that even minor syntactic
differences result in different strings. For example, the two predi-
cates (A > B) and (B < A) would not match. To avoid this prob-
lem, we must interpret the predicates and exploit equivalences
among expressions. Exploiting commutativity is a good example,
applicable to many types of expressions: comparisons, addition,
multiplication, and disjunction (OR). We can design matching
functions at different levels of sophistication and complexity de-
pending on how much knowledge about equivalences we build
into the function. For example, a simple function might only un-
derstand that (A+B) = (B+A), while a more sophisticated function
might also recognize that (A/2 + B/5)*10 = A*5 + B*2.

Our decision algorithm exploits knowledge about column equiva-
lences and column ranges. We first divide the predicates Wq and
Wv into three components and write the implication test as

(PEq ∧ PRq ∧ PUq⇒ PEv ∧ PRv ∧ PUv).

PEq consists of all column equality predicates from the query, PRq

contains range predicates, and PUq is the residual predicate con-
taining all remaining conjuncts of Wq. Wv is divided similarly. A
column-equality predicate is any atomic predicate of the form
(Ti.Cp = Tj.Cr), where Cp and Cr are column references. A range
predicate is any atomic predicate of the form (Ti.Cp op c) where c
is a constant and op is one of the operators “<”, “≤”, “=”, “≥”,
“>”. The implication test can be split into three separate tests:

(PEq ∧ PRq ∧ PUq⇒ PEv) ∧
(PEq ∧ PRq ∧ PUq⇒ PRv) ∧
(PEq ∧ PRq ∧ PUq⇒ PUv).

An implication test can be strengthened by dropping conjuncts in
the antecedent. (Expressed in formal terms, the formula (A⇒C)
⇒ (AB⇒C) holds for arbitrary predicates A, B, C. In words, if we
can deduce that A by itself implies C then certainly A and B to-
gether imply C.) Our final tests are strengthened versions of the
three tests. To determine whether all rows required by a query ex-
ist in the view, we apply the following three tests:

(PEq ⇒ PEv) (Equijoin subsumption test)

(PEq ∧ PRq ⇒ PRv) (Range subsumption test)

(PEq ∧ PUq ⇒ PUv) (Residual subsumption test)

The first test is called the equijoin subsumption test because, in
practice, most column equality predicates come from equijoins.
However, all column equality predicates are included in PE, even
those referencing columns in the same table. Recall that the predi-
cates in PEq are the column equality predicates used for comput-
ing the query equivalence classes. Since PEq is in the antecedent
in the latter two implications, we can reroute a column reference
to any column within its query equivalence class.

The tests are clearly stronger than minimally required and may
cause some opportunities to be missed. For instance, by dropping
PRq from the antecedent of the equijoin test we will miss cases
when the query equates two columns to the same constant, say,
(A=2)∧ (B=2) and the view contains the weaker predicate (A=B).
A similar problem may arise in the residual subsumption test. For
instance, if the query contains (A=5)∧ (B=3) and the view con-
tains the predicate (A+B) = 5, we would safely but incorrectly
conclude that the view does not provide all required rows. It is a
tradeoff between speed and completeness.

Check constraints can be readily incorporated into the tests. The
key observation is that check constraints on the tables of a query
can be added to the where-clause without changing the query re-
sult. Hence, check constraints can be taken into account by in-
cluding them in the antecedent of the implication Wq ⇒ Wv.
Whether or not the check constraints will actually be exploited
depends on the algorithm used for testing.

Equijoin subsumption test.
The equijoin subsumption test amounts to requiring that all col-
umns equal in the view must also be equal in the query (but not
vice versa). We implement this test by first computing column
equivalence classes, as explained in the previous section, both for
the query and the view, and then checking whether every non-
trivial view equivalence class is a subset of some query equiva-
lence class. Just checking that all column equality predicates in
the view also exist in the query is a much weaker test because of
transitivity. Suppose the view contains (A=B and B=C) and the
query contains (A=C and C=B). Even though the actual predi-
cates don’t match, they are logically equivalent because they both
imply that A=B=C. The effect of transitivity is correctly captured
by using equivalence classes.

If the view passes the equijoin subsumption test, we know that it
does not contain any conflicting column equality constraints. We
can also easily compute what, if any, compensating column equal-
ity constraints must be enforced on the view to produce the query
result. Whenever some view equivalence classes E1, E2 … En map
to the same query equivalence class E, we create a column-
equality predicate between any column in Ei and any column in
Ei+1 for i=1, 2, …, n-1.

Range subsumption test.
When no ORs are involved, there is an easy algorithm for the
range subsumption test. We associate with each equivalence class

4

in the query a range that specifies a lower and upper bound on the
columns in the equivalence class. Both bounds are initially left
uninitialized. We then consider the range predicates one by one,
find the equivalence class containing the column referenced, and
set or adjust its range as needed. If the predicate is of type (Ti.Cp

<= c), we set the upper bound to the minimum of its current value
and c. If is of type (Ti.Cp >= c), we set the upper bound to the
maximum of its current value and c. Predicates of the form (Ti.Cp

< c) are treated as (Ti.Cp <= c-∆) where c-∆ denotes the smallest
value preceding c in the domain of column Ti.Cp. Predicates of the
form (Ti.Cp > c) are treated as (Ti.Cp <= c+∆). Finally, predicates
of the form (Ti.Cp = c) are treated as (Ti.Cp >= c)∧ (Ti.Cp <= c).
The same process is repeated for the view.

The view cannot produce all required rows if it is more tightly
constrained than the query. To check this, we consider the view
equivalence classes with ranges where at least one of the bounds
has been set. We find the matching equivalence class in the query,
the query equivalence class that has at least one column in com-
mon with the query equivalence class, and check whether the
range of the query equivalence class is contained in the range of
the view equivalence class. (Uninitialized bounds are treated as
+∞ or -∞.) If it is not, the range subsumption test fails and the
view is rejected.

During this process we can determine what compensating range
predicates must be applied to the view to produce the query result.
If a query range matches precisely the corresponding view range,
no restriction is needed. If the lower bound doesn’t match exactly,
we must restrict the view result by enforcing the predicate (T.C
>= lb) where T.C is a column in the (query) equivalence class and
lb is the lower bound of the query range. If the upper bounds dif-
fer, we need to enforce the predicate (T.C <= ub).

This range coverage algorithm can be extended to support dis-
junctions (OR) of range predicates. Due to space limitations, we
will not discuss the extension here. Our prototype does not sup-
port disjunctions.

Residual subsumption test.
Conjuncts that are neither column-equality predicates nor range
predicates form the residual predicates of the query and the view.
The only reasoning applied to these predicates is column equiva-
lence. We test the implication by checking whether every con-
junct in the view residual predicate matches a conjunct in the
query residual predicate. Two column references match if they be-
long to the same (query) equivalence class. If the match fails, the
view is rejected because the view contains a predicate not present
in the query. Any residual predicate in the query that did not
match anything in the view must be applied to the view.

As discussed in the beginning of this section, whether two con-
juncts are found to match depends on the matching algorithm. Our
prototype implementation uses a shallow matching algorithm: ex-
cept for column equivalences, the expressions must be identical.
An expression is represented by a text string and a list of column
references. The text string contains the textual version of the ex-
pression with column references omitted. The list contains every
column reference in the expression, in the order they would occur
in the textual version of the expression. To compare two expres-
sions, we first compare the strings. If they are equal, we scan
through the two lists comparing column references in the same
positions in the two lists. If both column references are contained
in the same (query) equivalence class, the column references
match, otherwise not. If all column pairs match, the expressions
match. We chose this shallow algorithm for speed, fully aware
that it may cause some opportunities to be missed.

In summary, here are the steps of our procedure for testing
whether a view contains all the rows needed by the query.

1. Compute equivalence classes for the query and the view.
2. Check that every view equivalence class is a subset of a

query equivalence class. If not, reject the view
3. Compute range intervals for the query and the view.
4. Check that every view range contains the corresponding

query range. If not, reject the view.
5. Check that every conjunct in the residual predicate of the

view matches a conjunct in the residual predicate of the
query. If not, reject the view.

Example 2:

View:
Create view V2 with schemabinding as
Select l_orderkey, o_custkey, l_partkey,

l_shipdate, o_orderdate,
l_quantity*l_extendedprice as gross_revenue

From dbo.lineitem, dbo.orders, dbo.part
Where l_orderkey = o_orderkey
And l_partkey = p_partkey
And p_partkey >= 150
And o_custkey >= 50 and o_custkey <= 500
And p_name like ‘%abc%’

Query:
Select l_orderkey, o_custkey, l_partkey,
l_quantity*l_extendedprice
From lineitem, orders, part
Where l_orderkey = o_orderkey
And l_partkey = p_partkey
And l_partkey >= 150 and l_partkey <= 160
And o_custkey = 123
And o_orderdate = l_shipdate
And p_name like ‘%abc%’
And l_quantity*l_extendedprice > 100

Step 1: Compute equivalence classes.
View equivalence classes: {l_orderkey, o_orderkey},
{l_partkey, p_partkey}, {o_orderdate}, {l_shipdate}

Query equivalence classes: {l_orderkey, o_orderkey},
{l_partkey, p_partkey}, {o_orderdate, l_shipdate}

Not all trivial equivalence classes are shown; {o_orderdate} and
{l_shipdate} are included because they are needed later in the ex-
ample.

Step 2: Check view equivalence class containment.
The two non-trivial view equivalence classes both have exact
matches among the query equivalence classes. The (trivial)
equivalence classes {o_orderdate} and {l_shipdate} map to the
same query equivalence class, which means that the substitute ex-
pression must create the compensating predicate
(o_orderdate=l_shipdate).

Step 3: Compute ranges.
View ranges: {l_partkey, p_partkey} ∈ (150, +∞),

{o_custkey} ∈ (50, 500)

Query ranges: {l_partkey, p_partkey} ∈ (150, 160),
{o_custkey} ∈ (123, 123)

Step 4: Check query range containment.
The range (150, 160) on {l_partkey, p_partkey} is contained in
the corresponding view range. The upper bounds do not match so
we have to enforce the predicate ({l_partkey, p_partkey} <= 160).
The range (123, 123) on {o_custkey} is also contained in the cor-
responding view range. The bounds don’t mach so we must en-

5

force the predicates (o_custkey >= 123) and (o_custkey <= 123),
which can be simplified to (o_custkey = 123).

Step 5: Check match of view residual predicates.
View residual predicate: p_name like ‘%abc%’

Query residual predicate: p_name like ‘%abc%’,
l_quantity*l_extendedprice > 100

The view has only one residual predicate, p_name like ‘%abc%’,
which also exists in the query. The extra residual predicate,
l_quantity*l_extendedprice > 100 must be enforced.

The view passes all the tests so we conclude that it contains all the
required rows. The compensating predicates that must be applied
to the view are (o_orderdate = l_shipdate), ({p_partkey,
l_partkey} <= 160), (o_custkey = 123), and
(l_quantity*l_extendedprice > 100.00). The notation {p_partkey,
l_partkey} in the second predicates means that we can choose ei-
ther p_partkey or l_partkey. �

3.1.3 Can the required rows be selected?
We explained in the previous section how to determine the com-
pensating predicates that must be enforced on the view to reduce
it to the correct set of rows. They are of three different types.

1. Column equality predicates obtained while comparing view
and query equivalence classes. In our example above, there
was one predicate of this type: (o_orderdate = l_shipdate).

2. Range predicates obtained while checking query ranges
against view ranges. There were two predicates of this type: ,
({p_partkey, l_partkey} <= 160) and (o_custkey = 123).

3. Unmatched residual predicates from the query. There was
one predicate of this type: (l_quantity*l_extendedprice >
100).

All compensating predicates must be computable from the view’s
output. We exploit equalities among columns by considering each
column reference to refer to the equivalence class containing the
column, instead of referencing the column itself. The query
equivalence classes are used in all but one case, namely, the com-
pensating column equality predicates (point one in the list above).
These predicates were introduced precisely to enforce additional
column equalities required by the query. Each such predicate
merges two view equivalence classes and, collectively, they make
the view equivalence classes equal to the query equivalence
classes. Hence, a column reference can be redirected to any col-
umn within its view equivalence class but not within its query
equivalence class.

Compensating predicates of type 1 and type 2 above contain only
simple column references. All we need to do is check whether at
least one of the columns in the referenced equivalence class is an
output column of the view and route the reference to that column.
Compensating predicates of type 3 may involve more complex
expressions. In that case, it may be possible to evaluate the ex-
pression even though some of the columns referenced cannot be
mapped to an output column of the view. For example, if
l_quantity*l_extendedprice is available as a view output column,
we can still evaluate the predicate (l_quantity*l_extendedprice >
100) without the columns l_quantity and l_extendedprice. How-
ever, our prototype implementation ignores this possibility and
requires that all columns referenced in compensating predicates
be mapped to (simple) output columns of the view.

In summary, we determine whether all rows required by the query
can be correctly selected from a view as follows.

1. Construct compensating column equality predicates while
comparing view equivalence classes against query equiva-
lence classes as described in the previous section. Try to map
every column reference to an output column (using the view
equivalence classes). If this is not possible, reject the view.

2. Construct compensating range predicates by comparing col-
umn ranges as described in the previous section. Try to map
every column reference to an output column (using the query
equivalence classes). If this is not possible, reject the view.

3. Find the residual predicates of the query that are missing in
the view. Try to map every column reference to an output
column (using the query equivalence classes). If this is not
possible, reject the view.

3.1.4 Can output expressions be computed?
Checking whether all output expressions of the query can be
computed from the view is similar to checking whether the addi-
tional predicates can be computed correctly. If the output expres-
sion is a constant, just copy the constant to the output. If the out-
put expression is a simple column reference, check whether it can
be mapped (using the query equivalence classes) to an output col-
umn of the view. For other expressions, we first check whether
the view output contains exactly the same expression (taking into
account column equivalences). If so, the output expression is just
replaced by a reference to the matching view output column. If
not, we check whether the expression’s source columns can all be
mapped to view output columns, i.e. whether the complete ex-
pression can be computed from (simple) output columns. If the
view fails these tests, the view is rejected.

This algorithm will miss some cases. For instance, we do not con-
sider whether some part of an expression matches a view output
expression. Neither do we consider the case when it can be de-
duced that a query column is constant because of constraints in
the where-clause, possibly taking into account check constraints
on the column.

3.1.5 Do rows occur with correct duplication factor?
When the query and the view reference exactly the same tables,
this condition is trivially satisfied if the view passes the previous
tests. The more interesting case occurs when the view references
additional tables, which is covered in the next section.

3.2 Views with extra tables
Suppose we have a SPJ query that references tables T1, T2 ,…, Tn

and a view that references one additional table, that is, tables T1,
T2 ,…, Tn, S. Under what circumstances can the query still be
computed from the view? Our approach is based on recognizing
cardinality-preserving joins (sometimes called table extension
joins). A join between tables T and S is cardinality preserving if
every row in T joins with exactly one row in S. If so, we can view
S as simply extending T with the columns from S. An equijoin be-
tween all columns in a non-null foreign key in T and a unique key
in S has this property. A foreign key constraint guarantees that,
for every row t of T, there exists at least one row s in S with
matching column values for all non-null foreign-key columns in t.
All columns in t containing a null are ignored when validating the
foreign-key constraint. It can be shown that all requirements
(equijoin, all columns, non-null, foreign key, unique key) are es-
sential.

Now consider the case when the view references multiple extra
tables. Suppose the query references tables T1, T2 ,…, Tn and the
view references m extra tables, that is, it references tables T1, T2

,…, Tn , Tn+1, Tn+2 ,…, Tn+m. To determine whether tables Tn+1,

6

Tn+2 ,…, Tn+m are joined to tables T1, T2 ,…, Tn through a series of
cardinality preserving joins we build a directed graph, called the
foreign-key join graph. The nodes in the graph represent tables T1,
T2 ,…, Tn , Tn+1, Tn+2 ,…, Tn+m. There is an edge from table Ti to
table Tj if the view specifies, directly or transitively, a join be-
tween tables Ti and Tj and the join satisfies all the five require-
ments listed above (equijoin, all columns, non-null, foreign key,
unique key). To capture transitive equijoin conditions correctly
we must use the equivalence classes when adding edges to the
graph. Suppose we are considering whether to add an edge from
table Ti to table Tj and there is an acceptable foreign key con-
straint going from columns F1, F2, …, Fn of table Ti to columns
C1, C2, …, Cn of Tj. For each column Ci, we locate the column’s
equivalence class and check whether the corresponding foreign
key column Fi is part of the same equivalence class. If the join
columns pass this test, we add the edge.

Once the graph has been built, we try to eliminate nodes Tn+1, Tn+2

,…, Tn+m by a sequence of deletions. We repeatedly delete any
node that has no outgoing edges and exactly one incoming edge.
(Logically, this performs the join represented by the incoming
edge.) When a node Ti is deleted, its incoming edge is also de-
leted, which may make another node deletable. This process con-
tinues until no more nodes can be deleted or the nodes Tn+1, Tn+2

,…, Tn+m have been eliminated. If we succeed in eliminating nodes
Tn+1, Tn+2 ,…, Tn+m, the extra tables in the view can be eliminated
through cardinality-preserving joins and the view passes this test.

The view must still pass the tests detailed in the previous section
(subsumption tests, required output columns available). However,
these test all assume that the query and the view reference the
same tables. To make them the same, we conceptually add the ex-
tra tables Tn+1, Tn+2 ,…, Tn+m to the query and join them to the ex-
isting tables T1, T2 ,…, Tn through exactly the same foreign-key
joins that were used to eliminate them from the view. Because the
joins are all cardinality preserving, this will not change the result
of the query in any way. In practice, we merely simulate the addi-
tion of extra tables by updating query equivalence classes. We
first add a trivial equivalence class for each column in tables Tn+1,
Tn+2 ,…, Tn+m. (We have now added the tables to the from clause
of the query.) Next, we scan the join conditions of all foreign-key
edges deleted during the elimination process above and apply
them to query equivalence classes. This will cause some query
equivalence classes to merge. (We have now added the join condi-
tions to the where-clause.) At the end of this process, the (concep-
tually) modified query references the same tables as the view and
the query equivalence classes have been updated to reflect this
change. After this modification, all tests described in the previous
section can be applied unchanged.

Example 3: This example illustrates views with extra tables.

View:
Create view v3 with schemabinding as
Select c_custkey, c_name, l_orderkey,

l_partkey, l_quantity
From dbo.lineitem, dbo.orders, dbo.customer
Where l_orderkey = o_orderkey
And o_custkey = c_custkey
And o_orderkey >= 500

Query:
Select l_orderkey, l_partkey, l_quantity
From lineitem
Where l_orderkey between 1000 and 1500
And l_shipdate = l_commitdate

We obtain the following equivalence classes and ranges for the
view and the query.

View: {l_orderkey, o_orderkey}, {o_custkey, c_custkey}
{ l_orderkey, o_orderkey} ∈ (500, +∞)

Query: {l_shipdate, l_commitdate}
{l_orderkey} ∈ (1000, 1500)

The foreign-key join graph for the view consists of three nodes
(lineitem, orders, customer) with an edge from lineitem to orders
and an edge from orders to customer. The customer node can be
deleted because it has no outgoing edges and one incoming edge.
This also deletes the edge from orders to customer. Now orders
has no outgoing edges and can be removed.

We then conceptually add orders and customer to the query. The
join predicate for the lineitem-to-orders edge is l_orderkey =
o_orderkey, which generates the equivalence class {l_orderkey,
o_orderkey}. The join predicate for the orders-to-customer edge is
o_custkey = c_custkey, which generates the equivalence class
{o_custkey, c_custkey}. The updated query equivalence classes
and ranges for the query are

Query: {l_shipdate, l_commitdate}, {l_orderkey, o_orderkey},
{o_custkey, c_custkey};
{ l_orderkey, o_orderkey} ∈ (1000, 1500)

We then apply the subsumption tests. The view passes the equi-
join subsumption test because every view equivalence class is a
subset of a query equivalence class. It also passes the range sub-
sumption test because the view range { l_orderkey, o_orderkey}
∈ (500, +∞) contains the corresponding query range { l_orderkey,
o_orderkey} ∈ (1000, 1500). The compensating predicates are
l_orderkey >= 1000 and l_orderkey <= 1500, which can be en-
forced because l_orderkey is available in the view output. Fi-
nally, every output column of the view can be computed from the
view output. �

The procedure above ensures that we can “prejoin”, directly or in-
directly, each extra table in the view to some input table T of the
query and the resulting, wider table will contain exactly the same
rows as T. This is safe but somewhat restrictive because we only
need to guarantee it for the rows actually consumed by the query,
not all rows. Here is an example of such a case. Suppose we have
a view consisting of tables T and S joined on T.F=S.C where F is
declared as a foreign key referencing C and C is the primary key
of S. Now consider a selection query on table T with the predicate
T.F > 50. If T.F is not declared with “not null”, the view will be
rejected by our procedure. The join of T and S does not preserve
the cardinality of T because rows with a null in column T.F are
not present in the view. However, for the subset of rows with a
non-null T.F value, it does preserve cardinality, which is all that
matters because of the null-rejecting predicate T.F > 50 in the
query. On other words, any row in T containing a null value in
T.F will be discarded the query predicate in any case. The algo-
rithm can be modified to handle this case (not yet implemented).
All that is required is an additional check when considering
whether to add an edge to the foreign-key join graph. A foreign
key column allowing nulls is still acceptable if the query contains
a null-rejecting predicate on the column (other than the equijoin
predicate).

3.3 Aggregation queries and views
In this section, we consider aggregation queries and views. SQL
Server allows expressions, as opposed to just columns, in the
group-by list both in queries and materialized views. In a materi-
alized view, all group-by expressions must also be in the output

7

list to ensure a unique key for each row. In addition, the output list
must contain a count_big(*) column so deletions can be handled
incrementally. The only other aggregation function currently al-
lowed in materialized views is sum.

We treat aggregation queries as consisting of a SPJ query fol-
lowed by a group-by operation and similarly for views. An aggre-
gation query can be computed from a view if the view satisfies the
following requirements.

1. The SPJ part of the view produces all rows needed by the
SPJ part of the query and with the right duplication factor.

2. All columns required by compensating predicates (if any) are
available in the view output.

3. The view contains no aggregation or is less aggregated than
the query, i.e, the groups formed by the query can be com-
puted by further aggregation of groups output by the view.

4. All columns required to perform further grouping (if neces-
sary) are available in the view output.

5. All columns required to compute output expressions are
available in the view output.

The first two requirements are the same as for SPJ queries. The
third requirement is satisfied if the group-by list of the query is a
subset of the group-by list of the view. That is, if the view is
grouped on expressions A, B, C then the query can be grouped on
any subset of A, B, C. This includes the empty set, which corre-
sponds to an aggregation query without a group-by clause. We
currently require that each group-by expression in the query
match exactly some group-by expression in the view (taking into
account column equivalences). This can be relaxed. As shown in
[16], it is sufficient that the grouping expression of the view func-
tionally determine the grouping expressions of the query.

If the query group-by list is equal to the view group-by list, no
further aggregation is needed so the fourth requirement is auto-
matically satisfied. If it is a strict subset, then we must add a com-
pensating group-by on top of the view. The grouping expressions
are the same as for the query. Because they are a subset of the
view grouping expressions and all grouping expressions of the
view must be part of the view output, they are always available in
the view output. Hence, the third requirement is automatically sat-
isfied.

Testing whether the fourth requirement is satisfied is virtually
identical to what was discussed for SPJ queries. The only slight
difference occurs when dealing with aggregation expressions. If
the query specifies a count(*) and the view is an aggregation
view, the count(*) must be replaced by a SUM over the view’s
count_big(*) column. If the query output contains a SUM(E)
where E is some scalar expression, we require that the view con-
tain an output column that matches exactly (taking into account
column equivalences). AVG(E) is converted to
SUM(E)/count_big(*).

Example 4: This may sound too easy, perhaps causing some
readers to wonder whether we handle situations illustrated by the
following example view and query.

View:
Create view v4 with schemabinding as
Select o_custkey, count_big(*) as cnt

sum(l_quantity*l_extendedprice)as revenue
From dbo.lineitem, dbo.orders
Where l_orderkey = o_orderkey
Group by o_custkey

Query:
Select c_nationkey,

sum(l_quantity*l_extendedprice)
From lineitem, orders, customer
Where l_orderkey = o_orderkey
And o_custkey = c_custkey

Group by c_nationkey

It is easy to see that the query can be computed from the view by
joining it with the customer table and then aggregating the result
on c_nationkey. However, the view satisfies none of the condi-
tions listed above so one might conclude that we will miss this
opportunity. Not so – this is a case where integration with the
optimizer helps. For queries of this type, the SQL Server opti-
mizer also generates alternatives that include preaggregation. That
is, it will generate the following form of the query expression.

Select c_nationkey, sum(rev)
From customer,

(select o_custkey,
sum(l_quantity*l_extendedprice) as rev

From lineitem, orders
Where l_orderkey = o_orderkey
Group by o_custkey) as iq

Where c_custkey = o_custkey
Group by c_nationkey

When the view-matching algorithm is invoked on the inner query,
it easily recognizes that the expression can be computed from v4.
Substituting in the view then produces exactly the desired expres-
sion, namely,

Select c_nationkey, sum(revenue)
From customer, v4
Where c_custkey = o_custkey
Group by c_nationkey

4. Fast filtering of views
To speed up view matching we maintain in memory a description
of every materialized view. The view descriptions contain all in-
formation needed to apply the tests described in the previous sec-
tion. Even so, it is slow to apply the tests to all views each time
the view-matching rule is invoked if the number of views is very
large. In this section, we describe an in-memory index, called a
filter tree, which allows us to quickly discard views that cannot be
used by a query.

A filter tree is a multiway search tree where all the leaves are on
the same level. A node in the tree contains a collection of (key,
pointer) pairs. A key consists of a set of values, not just a single
value. A pointer in an internal node points to a node at the next
level while a pointer in a leaf node points to a list of view descrip-
tions. A filter tree subdivides the set of views into smaller and
smaller partitions at each level of the tree.

A search in a filter tree may traverse multiple paths. When the
search reaches a node, it continues along some of the node’s out-
going pointers. Whether to continue along a pointer is determined
by applying a search condition on the key associated with the
pointer. The condition is always of the same type: a key qualifies
if it is a subset (superset) of or equal to a given search key. The
search key is also a set. We can always do a linear scan and check
every key but this may be slow if the node contains many keys.
To avoid a linear scan, we organize the keys in a lattice structure,
which allows us to find all subsets (supersets) of a given search
key easily. We call this internal structure a lattice index.

We describe the lattice index in more detail in the next section
and then explain the partitioning conditions applied at different
levels of the tree.

8

4.1 Lattice index
The subset relationship between sets imposes a partial order
among sets, which can be represented as a lattice. As the name in-
dicates, a lattice index organizes the keys in a graph that corre-
spond to the lattice structure. In addition to the (key, downward
pointer) pair described above, a node in the lattice index contains
two collections of pointers, superset pointers and subset pointers.
A superset pointer of a node V points to a node that represents a
minimal superset of the set represented by V. Similarly, a subset
pointer of V points to a node that represents a maximal subset of
the set represented by V. Sets with no subsets are called roots and
sets without supersets are called tops. A lattice index also con-
tains an array of pointers to tops and an array of pointers to roots.
Figure 1 shows a lattice index storing eight key sets.

ABC ABF BCDE

BEAB

A B

Tops

Roots D

Figure 1: Lattice index storing eight key sets:
A, B, D, AB, BE, ABC, ABF, BCDE

Searching a lattice index is a simple recursive procedure. Suppose
we want to find supersets of AB. We start from the top nodes,
where we find that ABC and ABF are supersets of AB. From each
qualifying node, we recursively follow the subset pointers, at each
step checking whether the target node is subsets of AB. AB is ac-
ceptable but none if its subset nodes are. The search returns ABC,
ABF, and AB. Note that AB is reached twice, once from ABC and
once from ABF. To avoid visiting and possibly returning the same
node multiple times, the search procedure must remember which
nodes have been visited. The algorithm for finding subsets is
similar; the main difference is that the search starts from root
nodes and proceeds upwards following superset pointers.

Due to space constraints, we will not describe insertion and dele-
tion algorithms for lattice indexes. They are not complex but some
care is required with the details.

4.2 Partitioning conditions
A filter tree recursively subdivides the set of views into smaller
and smaller non-overlapping partitions. At each level, a different
partitioning condition is applied. In this section, we describe the
partition conditions used in our prototype.

4.2.1 Source table condition
Views that lack some of the tables required by the query can be
discarded. This in captured by the following condition.

Source table condition: A query cannot be computed from a
view unless the view’s set of source tables is a superset of the
query’s set of source tables.

We build a lattice index using the view’s set of source tables as
the key. Given a query’s set of source tables, we search the lattice
index for partitions containing views that satisfy this condition.

4.2.2 Hub condition
Recall the algorithm explained in section 3.2 for eliminating extra
tables from a view. In that section, it was sufficient to have the al-
gorithm reduce the set of source tables to the same set as that of

the query. However, we can let the algorithm run until no further
tables can be eliminated from the view, thereby reducing the re-
maining set of tables to the smallest set possible. We call the re-
maining set the hub of the view. As discussed in section 3.2, a
view cannot be used to answer a query unless we can eliminate all
extra tables through cardinality-preserving joins. The hub cannot
be reduced further so clearly we can disregard any view whose
hub is not a subset of the query’s set of source tables. This obser-
vation gives us the following condition.

Hub condition: A query cannot be computed from a view unless
the hub of the view is a subset of the query’s set of source tables.

The previous condition gave us a lower bound on a view’s set of
source tables while this condition gives us an upper bound. We
again use a lattice index structure but this time with view hubs as
the key instead of the complete set of source tables. Given a
query, we then search the index for nodes whose key is a subset of
the query’s set of source tables.

The algorithm outlined above for computing view hubs tends to
produce hubs that are unnecessarily small because it takes into ac-
count only foreign-key joins. It can be improved by also taking
into account other predicates. Suppose T is a table that would be
eliminated from the hub by the algorithm above. Let T.C be a
column not participating in any non-trivial equivalence class. If
T.C is referenced in a range or other predicate, we can leave T in
the hub. The join is no longer guaranteed to be cardinality pre-
serving because the predicate on T.C may reject some rows in T.
The only way the reference to T.C can be rerouted to another col-
umn is if the query contains a column equality predicate involving
T.C. However, if that is the case, then T must also be among the
query’s source tables so leaving T in the hub will not cause the
view to be rejected.

4.2.3 Output column condition
Assume for the moment that the output lists of queries and views
are all simple column references. We will deal with more complex
output expressions separately. As stated earlier, a query cannot be
computed from a view unless all its output expressions can be
computed from the output of the view. However, this does not
mean that a query output column has to match an output column
because of equivalences among columns. The following example
illustrates what is required.

Example 6:
Suppose the query outputs columns A, B, and C. Furthermore,
suppose the query contains column equality predicates generating
the following equivalence classes: {A, D, E}, {B, F} {C}. The
columns within an equivalence class all have the same value so
they can be used interchangeably in the output list. We indicate
this choice by writing the output list as {A, D, E}, {B, F} {C}.

Now consider a view that outputs {A, D, G}, {E}, {B} and {C,
H} where the column equivalences have been computed from the
column equality predicates of the view. The columns that are ac-
tually included in the output list are indicated by underlining.
Logically, we can then treat the view as outputting all of the col-
umns, that is, as if its output list were extended to A, D, G, E, B,
C, H.

The first output column of the query can be computed from the
view if at least one of the columns A, D, or E exists in the view’s
extended output list. In this case, all of them do. Similarly, the
second column can be computed if B or F exists in the extended
output list. B does (but F does not). Finally, the third output col-
umn requires C, which also exists in the extended output list.
Consequently, the query output can be computed from the view. �

9

As this example illustrated, to correctly test availability of output
columns we must take into account column equivalences in the
query and in the view. We do this by replacing each column refer-
ence in the output list by a reference to the columns equivalence
class. For a view, we then compute the extended output list by in-
cluding every column in the referenced equivalence classes. We
can now state the condition that must hold.

Output column condition: A view cannot provide all required
output columns unless, for each equivalence class in the query’s
output list, at least one of its columns is available in the view’s
extended output list.

To exploit this condition, we build lattice indexes using the ex-
tended output lists of the views as keys. Given a query, we search
the index recursively beginning from the top nodes. A node quali-
fies if its extended output list satisfies the condition above. If so,
we follow its subset pointers. If not, it is not necessary to follow
the pointers because, if a view V does not provide all required
columns, neither does any view whose extended output list is a
subset of V’s extended output list.

4.2.4 Grouping columns
An aggregation query cannot be computed from an aggregation
view unless the query’s grouping columns are a subset of the
view’s grouping columns, again taking into account column
equivalences. This is exactly the same relationship as the one that
must hold between the output columns of the query and the view.
Consequently, we can extend the views’ grouping lists in the same
way as for output columns and build lattice indexes on the ex-
tended grouping lists. For completeness, here is the condition that
must hold between grouping columns.

Grouping column condition: An aggregation query cannot be
computed from an aggregation view unless, for each equivalence
class in the query’s grouping list, at least one of its columns is
present in the view’s extended grouping list.

4.2.5 Range constrained columns
A query cannot be computed from a view that specifies range
constraints on a column that is not range constrained in the view,
again taking into account column equivalences. We associate with
each query and view a range constraint list, where each entry ref-
erences a column equivalence class. A column equivalence class
is included in the list if it has a constrained range, that is, at least
one of the bounds has been set. Next, we compute an extended
constraint list in the same way as for output columns but this time
for the query but not the view. We can now state the condition
that must hold.

Range constraint condition: A query cannot be computed from a
view unless, for each equivalence class in the view’s range con-
straint list, at least one of its columns is present in the query’s ex-
tended range constraint list.

Note that the extended range constraint list is associated with the
query, and not the view. Hence, lattice indexes on the extended
constraint lists of views, mimicking the indexes on output col-
umns and grouping columns, cannot be used. However, we can
build lattice indexes based on a weaker condition involving a re-
duced range constraint list. The reduced range constraint list con-
tains only columns that reference trivial equivalence classes, i.e.
columns that are not equivalent to any other columns.

Weak range constraint condition: A query cannot be computed
from a view unless the view’s reduced range constraint list is a
subset of the query’s extended range constraint list.

When building a lattice index based on this condition, the com-
plete constraint list of a view is included and used as the key of a
node but the subset-superset relationship is computed solely based
on reduced constraint lists. A search starts from the roots and pro-
ceeds upwards along superset edges. If a node passes the weak
range constraint condition, we follow its superset pointers but the
node is returned only if it also passes the range constraint. If a
node fails the weak range constraint condition, all of its superset
nodes will also fail so there is no need to check them.

4.2.6 Residual predicate condition
Recall that we treat all predicates that are neither column-equality
predicates nor range predicates as residual predicates. The resid-
ual subsumption test checks that every residual predicate in the
view also exists in the query, again taking into account column
equivalences. Our implementation of the test uses a matching
function that compares predicates converted to text strings, omit-
ting column references, and then matches column references sepa-
rately. We associate with each view and query, a residual predi-
cate list containing just the text strings of the residual predicates.
Then the following condition must hold.

Residual predicate condition: A query cannot be computed from
a view unless the view’s residual predicate list is a subset of the
query’s residual predicate list.

For filtering purposes, we then build lattice indexes using the re-
sidual predicate lists of the views as keys. Given a query’s resid-
ual list, we search for nodes whose key is a subset of the query’s
residual list.

4.2.7 Output expression condition
Output expressions are handled in much the same way as residual
predicates. We convert the expressions to text strings, omitting
column references, and associate with each view and query an
output expression list consisting of the text strings of its output
expressions. We can then build lattice indexes based on the fol-
lowing condition.

Output expression condition: A query cannot be computed from
a view unless its (textual) output expression list is a subset of the
view’s (textual) output expression list.

A search then looks for nodes whose key is a superset of the
query’s (textual) output expression list. The condition is conserva-
tive in the sense that we ignore the possibility of computing an
expression from “scratch” using plain columns or precomputed
parts. The condition can be weakened to cover this possibility but
the details are beyond the scope of this paper.

4.2.8 Grouping expression condition
Expressions in the grouping clause can be handled in the same
way as expressions in the output list. For completeness, we state
the condition.

Grouping expression condition: An aggregation query cannot be
computed from an aggregation view unless its (textual) grouping
expression list is a subset of the view’s (textual) grouping expres-
sion list.

4.3 Summary
As we saw, each condition above can be the basis for a lattice in-
dex subdividing a collection of views. The conditions are inde-
pendent and can be composed in any order to create a filter tree.
For instance, we can create a filter tree where the root node parti-
tions the views based on their hubs and the second level nodes
further subdivide each partition according to the views’ extended

10

output column lists. We can stop there or add more levels using
any other conditions. Our implementation uses a filter tree with
eight levels. From top to bottom, the levels are: hubs, source ta-
bles, output expressions, output columns, residual constraints, and
range constraints. For aggregation views, there are two additional
levels: grouping expressions and grouping columns.

5. Experimental results
We have implemented the view-matching algorithm, including the
filter tree, in SQL Server. One goal was to keep optimization time
low, even when the number of materialized views is high. We ran
a series of experiments that measured the increase in optimization
time and the benefits of using the filter tree.

The views used in the experiments were randomly generated
SPJG views over the TPC-H/R database. Each view was gener-
ated by randomly selecting a table and joining in additional tables
randomly through foreign key equijoins. Then range predicates
were added on randomly selected columns until the estimated car-
dinality of the SPJ part of the result was within 25-75% of the
largest table included. Output columns were also selected ran-
domly. About 75% of the views were aggregation views, using
randomly selected output columns for grouping. Any remaining
(numerical) output column was used as the argument for a SUM.
A parameter file specified the frequency with which a table was
chosen as the initial table, the frequency with which a foreign key
was select for a join, the frequency with which a column received
a range predicate, and the frequency with which a column was
chosen as an output column. We generated a total of 1000 materi-
alized views. Queries were generated in the same way but with a
different seed for the random number generator and restricting the
cardinality of the result to within 8-12% of the largest table used
in the query. 40% of the queries referenced two tables, 20% ref-
erenced three, 17% referenced four, 13% referenced five, 8% ref-
erenced six, and 2% referenced seven tables.

All experiments were run on a machine with 128 MB of memory
and a 700MHz Pentium processor. The database was TPC-H at
scale factor 0.5 (500MB) with primary keys and foreign keys de-
fined. The scale factor does not affect optimization time.

Figure 2 shows the total optimization time for 1000 randomly
generated queries varying the number of materialized views. The
bottom two lines were measured with the filter tree enabled. The
line labeled Alt&Filter shows the total optimization time. The op-
timization time increases linearly with the number of views. For
1000 views, it increased by about 60%. The absolute time is still

low; on average, only 0.15 seconds per query. The increase in op-
timization time is caused by two factors: the time for finding and
checking candidate views and the time spent in the optimizer
processing the substitutes produced. In an attempt to separate the
two components, we also ran the optimization without introducing
substitutes. That is, the view-matching algorithm performed its
normal analysis but always returned without producing substi-
tutes. The bottom line shows the optimization time when no sub-
stitutes were produced. This shows that approximately 35% of the
time was spent finding and checking views and the rest spent on
further processing of the substitutes produced.

The top two lines (dashed) show the optimization time with the
filter tree disabled. Using the filter tree to find candidate views
reduces the optimization time significantly. With 1000 views, the
optimization time increases by about 110% when the filter tree is
disabled, as opposed to about 60% when it is enabled.

Estimating the time spent on view matching simply by never pro-
ducing substitutes is not entirely accurate. Introducing substitutes
increases the amount of time spent on view matching because the
substitutes will result in additional expressions being generated,
on which view matching will also be attempted. In other words,
introducing substitutes increases the number of invocations of the
view-matching rule. We instrumented the code to measure more
accurately the total time spent in the view-matching rule. The re-
sults are plotted in Figure 3. For 1000 views, about half of the in-
crease in the optimization time originated in the view-matching
code. When there are fewer views, fewer substitutes are generated
on average and a larger fraction of the time is spent on view
matching. When there are very few views, most invocations will
produce no substitutes at all, in which case all of the time is spent
on (unsuccessful) view matching.

We also measured how effectively the filter tree reduces the num-
ber of views that have to be tested more carefully. The view-
matching rule may be invoked on expressions that are not accept-
able. The expression may contain, for example, a subquery. If so,
the rule returns immediately without checking any views. These
unsuccessful invocations are not counted in the subsequent sum-
mary. If this first test is successful, we begin looking for accept-
able views. Without the filter tree, every view would then have to
be checked. Using the filter tree, most views are discarded quickly
and only a small set of candidate views remain. The filter tree was
highly effective on our workload; it consistently reduced the can-
didate set to less than 0.4% of the views on average. The actual
numbers were 0.29% for 100 views and 0.36% for 1000 views.

Figure 2: Optimization time as a function of
the number of views.

0

50

100

150

200

0 200 400 600 800 1000

No of views

O
p

t.
ti

m
e

(s
ec

)

Alt & No Filter No Alt & No Filter

Alt & Filter No Alt & Filter

Figure 3: Total increase in optimization time
and time spent in view-matching rule

0

10

20

30

40

50

60

0 200 400 600 800 1000

No of views

In
cr

ea
se

in
o

p
ti

m
iz

at
io

n
ti

m
e

Total increase View matching time

11

On average, between 15% and 20% of the candidate views passed
the further checking and produced substitutes. The average num-
ber of substitutes produced per invocation was low: 0.04 for 100
views, rising to 0.59 for 1000 views. This means that most invo-
cations found no matching views at all. However, the view-
matching rule is invoked multiple times per query. On our work-
load, the average number of invocations was between 17.8 and
17.9 times. The average number of substitutes produced per query
ranged from 0.7 for 100 views to 10.5 for 1000 views. In other
words, on average, over ten different rewrites of the query using
views were considered by the optimizer.

Figure 4: No of final query plans using
materialized views.

0

200

400

600

800

1000

0 200 400 600 800 1000

No of views

N
o

o
f

p
la

n
s

Figure 4 plots how many of the final execution plans actually used
materialized views. Considering that views and queries were ran-
domly generated, the curve behaves as expected, namely, the
benefit of additional views decreases with the number of views al-
ready in the system. Already with 200 views, the best execution
plan used views for about 60% of the queries. With 1000 views,
this increased to about 87%. All this shows is that view matching
is working, finding applicable views and producing improved
plans.

6. Related work
Algorithms proposed in the literature for solving the view-
matching problem differ in several respects:

• Class of query expressions considered.
• Class of views supported.
• Class of substitute expressions considered.
• Whether and how multiple substitutes are handled.
• Whether bag semantics or set semantics is assumed.
• Which constraints, if any, are exploited.

However, a view-matching algorithm solves only part of the op-
timization problem. The algorithm must also be integrated into the
overall optimization process so that all valid rewrites using views
are generated and evaluated in the same way as rewrites not using
views. Many papers on query optimization using views ignore
this aspect completely, some consider only the issue of finding all
valid rewrites, and some propose selecting a best rewrite by heu-
ristic rules.

Larson and Yang [10] were the first to describe a view-matching
algorithm for SPJ queries and views. They assumed set seman-
tics, considered only single-table substitutes and did not consider
constraints. Their algorithm sometimes produced substitutes not
expressible in SQL or standard relation algebra. Our view-
matching algorithm has much in common with the approach taken
in this paper. In a subsequent paper [17], Larson and Yang ex-
tended their algorithm to consider substitutes consisting of joins

of views. The focus was on finding all valid rewrites but the paper
did not discuss how to select the best rewrite.

Chaudhuri et al. [4] published the first paper on incorporating the
use of materialized views into query optimization, in their case, a
System-R style optimizer using dynamic programming. They
dealt with a limited form of SPJ queries and views and assumed
set semantics. Their matching algorithm does not consider predi-
cate subsumption or constraints. They make use of a map table
that specifies which subexpressions of the query can be substi-
tuted by one of the available views. The map table is computed
before join enumeration begins. During join enumeration, re-
writes of the expression under consideration are located in the
map table and their cost estimated in the normal way. A small
experimental study on ten queries showed a 50% increase in op-
timization time with only six materialized views.

Levy, Mendelzon and Sagiv [11] studied the complexity of rewrit-
ing SPJ queries using views and proved that many related prob-
lems are NP-complete. This is true even for the simplest version
of the problem, determining whether there exists a rewrite of a
conjunctive query with no built-in predicates. (In SQL terms: the
where-clause is limited to a conjunction of column-equality predi-
cates and predicates equating a column to a constant.)

Gupta, Harinaryan and Quass [9] introduced a generalized projec-
tion operator that captures duplicate elimination, aggregation,
grouping, and duplicate-preserving projection in a unified frame-
work. The paper focuses on transformation rules for this new op-
erator. They use the transformation rules to generate expressions
that can be rewritten using aggregation views. Substitute expres-
sions are limited to single views and do not take into account sub-
sumption of selection predicates and grouping expressions.

Srivastava et al. [15] present a view-matching algorithm for SPJG
queries and views. They assume bag semantics but do not con-
sider constraints. They take into account subsumption of selection
predicates, though to what extent is not clear because the algo-
rithm for testing subsumption is not fully described. In addition to
single-view substitutes, they also consider substitutes consisting
of unions of views (but only for SPJ views). Not surprisingly, our
view-matching algorithm is based on conditions similar to theirs.
However, they require that the view and the expression it replaces
reference exactly the same tables, which we do not. The paper
does not discuss how to select among multiple rewrites nor other
issues related to optimizer integration. No experimental results are
provided. Chang and Lee [3] recognized that a view can some-
times be used even if it contains extra tables. However, we cannot
tell from their paper what tests they apply to verify this.

The requirement that the grouping columns of a query must be a
subset of the grouping columns of a view is sufficient but not
necessary. Yan and Larson [16] proved that it is sufficient that the
grouping columns of the view functionally determine the group-
ing columns of the query. This property is important in OLAP
environments because lower levels in a dimension hierarchy func-
tionally determine higher levels in the hierarchy. Park, Kim and
Lee [13] exploited these functional dependencies to define a par-
tial order (lattice) among OLAP queries and views. The key ob-
servation is that a view is potentially useful only if it is at the
same or lower level than the query in the lattice. Their algorithm
may produce substitutes containing unions and joins. They use
heuristic rules for selecting the best rewrite. No experimental re-
sults are reported. Our algorithm can easily be extended to con-
sider functional dependencies in a dimension hierarchy but SQL
Server does not currently have any way to specify such functional
dependencies. However, if a dimension hierarchy is implemented

12

as a set of tables connected by foreign keys, the functional de-
pendencies are implied by foreign keys and will be exploited.

Oracle was the first commercial database system to support mate-
rialized views[2]. Views may contain joins and aggregation but no
selections. The query rewrite algorithm is briefly described in the
Oracle 8i documentation. The algorithm considers replacing part
or all of a PSJG query by a materialized view. Views with extra
tables joined in through cardinality-preserving joins are consid-
ered and functional dependencies among levels in dimension hier-
archies are taken into account. Multiple views may be used in a
substitute expression. If multiple rewrites are possible, one is se-
lected by heuristic rules based on the size of the views involved.
The selected rewrite is then optimized and compared to the best
plan with no materialized views. No information is provided
about the speed or scalability of the query rewrite algorithm.

Zaharioudakis et al. [18] describe a view-matching algorithm im-
plemented in DB2 UDB. The algorithm performs a bottom-up
matching of query graphs but does not require an exact match.
Compensating nodes, for instance, selections and further aggrega-
tion, may be introduced along the way. Cardinality-preserving
joins are recognized as are subsumption of selection predicates
(though the exact algorithm is not described). Complex aggrega-
tions (rollup, cube, grouping sets) are also handled. The paper
does not specify precisely what substitute expressions are consid-
ered nor does it say whether multiple rewrites are considered. In-
tegration with the cost-based optimizer is not addressed and no
experimental results are reported.

Pottinger and Levy [14] considered the view-matching problem
for conjunctive SPJ queries and views in the context of data inte-
gration. In that context, a view describes data available from some
data source and a query must be answered using only the set of
views. It may not be possible to find a rewriting that is equivalent
to the query. Instead, the objective is to find a maximally-
contained rewriting, which provides the best answer possible
(most rows). The rewriting consists of a union of combinations of
views joined together, where each such combination contributes
some rows to the result. They present a new algorithm, called the
MiniCon algorithm, and compare its performance to two earlier
algorithms. The MiniCon algorithm reduces the number of view
combinations by taking into account availability of join columns.
That is, if a view V must be joined to a table T (or another view
containing T) to provide complete rows but the required join col-
umns are not among its output columns, then V can be discarded.
They then show experimentally that exploiting this observation
provides significant speedup. It is not entirely clear to us how to
translate their findings into a query optimization context because
of the difference in objectives.

7. Summary and extensions
Materialized views can reduce query processing time very signifi-
cantly but only if the query optimizer is able to find applicable
views quickly. We presented an efficient view-matching algo-
rithm for SPJG views and described its integrated into a transfor-
mation-based optimizer. We also presented an index structure,
called a filter tree, which greatly speeds up the search for applica-
ble views. Experimental results obtained from an implementation
in Microsoft SQL Server showed that the algorithm is fast and
scales to very large numbers of views. With 1000 views in the
system, average optimization time remained as low as 0.15 sec-
onds per query, even though an average of ten different substitutes
using views were generated. To the best of our knowledge, no
other algorithm has achieved this level of speed and scalability.

We are planning to extend the algorithm to cover a broader class
of views and substitute expressions. Some extensions are easy,
requiring only local changes. For instance, the tests applied to de-
termine whether a view contains all rows needed by a query are
somewhat conservative and do not fully exploit constraints. The
tests can be refined in several ways. We indicated how to take into
account check constraints. Support for predicates containing ORs
can also be added relatively easily. Improved reasoning about
when a scalar expression can be computed from other scalar ex-
pressions would also be desirable.

Some extensions are a wee bit more complex. The current algo-
rithm produces only single-table substitutes. We plan to add union
substitutes and substitutes with base table backjoins to the reper-
toire. Union substitutes cover the case when all rows needed are
not available from a single view but can be collected from several
views. Overlapping views together with SQL’s bag semantics
complicate the issue. If the same rows can be obtained from mul-
tiple views, we have to make sure that they appear in the result
with the right duplication factor. Base table backjoins cover the
case when a view contains all tables and rows needed but some
columns are missing. In that case, it may be worthwhile backjoin-
ing the view to a base table to pull in the missing columns, espe-
cially of the missing columns are available from an index.

8. References
[1] S. Agrawal, S. Chaudhuri, V. R. Narasayya: Automated Selection of
Materialized Views and Indexes in SQL Databases. VLDB 2000: 496-505
[2] R.G. Bello, K. Dias, J. Feenan, J. Finnerty, W.D. Norcott, H. Sun, A.
Witkowski, M. Ziauddin, Materialized Views in Oracle, VLDB 1998,
659-664.
[3] J. Chang and S. Lee, Query Reformulation Using Materialized Views
in Data Warehousing Environment, First ACM Int’l Workshop on Data
Warehousing and OLAP (DOLAP), 1998, 54-59.
[4] S. Chaudhuri, S. Krishnamurthy, S. Potamianos, K. Shim, Optimizing
Queries with Materialized Views, ICDE 1995, 190-200.
[5] S. Cohen, W. Nutt, A. Serebrenik, Rewriting Aggregate Queries Us-
ing Views, PODS, 1999, 155-166.
[6] G. Graefe, The Cascades Framework for Query Optimization, Data
Engineering Bulletin, 18(3), 1995, 19-29.
[7] G. Graefe and W. J. McKenna, The Volcano Optimizer Generator:
Extensibility and Efficient Search, ICDE 1993, 209-218.
[8] S. Grumbach, M. Rafanelli, L. Tininini, Querying Aggregate Data,
PODS 1999, 174-184.
[9] A. Gupta, V. Harinarayan, D. Quass, Aggregate Query Processing in
Data WareHousing Environments, VLDB 1995, 358-369.
[10] P.-Å. Larson and H. Z. Yang, Computing Queries from Derived Rela-
tions, VLDB 1985, 259-269.
[11] A. Levy, A. O. Mendelzon, Y. Sagiv, D. Srivastava, Answering Que-
ries Using Views, PODS 1995, 95-104.
[12] W. Nutt, Y. Sagiv, S. Shurin, Deciding Equivalence Among Aggre-
gate Queries, PODS 1998, 214-223.
[13] C.-S. Park, M. H. Kim and Y.-J. Lee, Rewriting OLAP Queries Using
Materialized Views and Dimension Hierarchies in Data Warehouses, Ko-
rea Advanced Institute of Science and Technology, CS/TR-2000-156.
[14] R. Pottinger, A. Levy, A Scalable Algorithm for Answering Queries
Using Views, VLDB 2000, 484-495.
[15] D. Srivastava, S. Dar, H.V. Jagadish, A. Levy, Answering Queries
with Aggregation Using Views, VLDB 1996, 318-329.
[16] W. P. Yan and P. -Å. Larson, Eager Aggregation and Lazy Aggrega-
tion, VLDB 1995, 345-357.
[17] H. Z. Yang and P. -Å. Larson, Query Transformation for PSJ Que-
ries, VLDB 1987, 245-254.
[18] M. Zaharioudakis, R. Cochrane, G. Lapis, H. Pirahesh, M. Urata, An-
swering Complex SQL Queries Using Automatic Summary Tables, SIG-
MOD 2000, 105-116

