A Call to Regularity

Moshe Y. Vardi*

Rice University

^{*}Joint work with D. Calvanese, G. De Giacomo, and M. Lenzerini

Database Query Languages

- Standard database query languages (e.g., SQL 2.0) are essentially 1st-order.
- Aho and Ullman, 1979: 1st-order languages are weak; add *recursion*
- Gallaire and Minker, 1978: add recursion via *logic* programs
- SQL 3.0, 1999: recursion added

Expressiveness costs money!!!

- 1st-order queries: LOGSPACE
- Recursive queries: *PTIME*

Datalog

Datalog:

- Function-free logic programs
- Existential, positive fixpoint logic
- Select-project-join-union-recur queries

Example: Transitive Closure

Path(x,y) :- Edge(x,y)

Path(x,y) : -Path(x,z), Path(z,y)

Definition: A program P is *bounded* if it is equivalent to a non-recursive program.

Example: Impressionable Shopper

Buys(x,y) : - Trendy(x), Buys(z,y)

Buys(x,y) :- Likes(x,y)

Data Complexity

Definitions:

- The stage function $s_P(n)$ of a program P is the least m such that $P^m(D) = P^\infty(D)$ for each D with at most n elements.
- A query Q is in STAGE(f(n)) if it is expressible by a program P such that $s_P(n)$ is in O(f(n)).

Database complexity and computational complexity:

- $STAGE(\text{polylog } n) \subseteq NC$
- $STAGE(\text{poly } n) \subseteq PTIME$

Gap Theorem [Kanellakis, 1992]:

- ullet P is bounded iff it defines a query in STAGE(1)
- P is unbounded iff s_P is in $\Omega(\log n)$

Gaifman, Mairson, Sagiv, V., 1987: Boundedness is undecidable.

Research Program - Study Boundary

Parameters:

- Number of derived predicates
- Arity of derived predicates
- Number of rules
- Nonlinear vs. linear (one recursive call per rule)
- I/O convention

GMSV: undecidability holds for linear programs with a single 4-ary derived predicate.

Binary Programs

Binary programs: binary derived predicates.

Theorem [Hillebrand, Kanellakis, Mairson, V., 1995]: Boundedness is undecidable for programs with a single binary derived predicate.

Proof: Redcution from halting problem for Turing machines:

- Σ : tape alphabet
- Base predicates: $Zero(x), Succ(x,y), Q_a(x)$ for $a \in \Sigma$
- Derived predicates: Fing(x,y)— pointers to corresponding positions in successive configurations

Cosmadakis, Gaifman, Kanellakis, V., 1988: Boundedness is decidable for unary programs.

Uniform Boundedness

I/O Conventions:

- Directed I/O: input base predicates, output derived predicate.
- uniform I/O: input/output all predicates: a program slice

Uniform boudedness: boundedness with respect to the uniform I/O convention.

Sirup: Single recursive rule program

Undecidability of uniform boundness:

- [GMSV, 1987]: 7-ary programs
- [HKMV, 1995]: 3-ary programs
- [Abiteboul, 1989]: sirups
- [Marcinkowski, 1996]: 3-ary sirups, 3-ary linear programs

Query Containment

Query Optimization: Given Q, find Q' such that:

- $Q \equiv Q'$
- ullet Q' is "easier" than Q

Query Containment: $Q_1 \sqsubseteq Q_2$ if $Q_1(B) \subseteq Q_2(B)$ for all databases B.

Fact: $Q \equiv Q'$ iff $Q \sqsubseteq Q'$ and $Q' \sqsubseteq Q$

Consequence: Query containment is a *key* database problem.

Query Containment

Other applications:

- query reuse
- query reformulation
- information integration
- cooperative query answering
- integrity checking

• ...

Consequence: Query containment is a fundamental database problem.

Decidability of Query Containment

- *SQL*: undecidable
 - Folk Theorem
 - Poor theory and practice of optimization
- SPJU: decidable
 - Chandra&Merlin-1977, Sagiv&Yannakakis-1982
 - Rich theory and practice of optimization
- Datalog: undecidable
 - Shmueli-1977
 - Difficult theory and practice of optimization

Unfortunately, most decision problems involving Datalog are undecidable - almost no interesting, well-behaved fragments.

1990s: Back to Binary Relations

WWW:

- Nodes
- Edges
- Labels

Semistructured Data: WWW, SGML documents, library catalogs, XML documents, Meta data,

Formally: (D, E, λ)

- \bullet D nodes
- $E \subseteq D^2$ edge
- $\lambda: E \to \Lambda^+$ labels (alt., also node labels)

Path Queries

Active Research Topic: What is the right query language for semistructured data?

Basic Element of all proposals: path queries

- $\bullet \ Q(x,y) : -x \ L \ y$
- L: formal language over labels
- $a \cdot \underline{l_1} \cdot \cdot \cdot \underline{l_k} \cdot b$
- Q(a,b) holds if $l_1 \cdots l_k \in L$

Example: Regular Path Query

$$Q(x,y) : -x (Wing \cdot Part^+ \cdot Nut) y$$

Path-Query Containment

$$Q_1(x,y) : -x L_1 y$$

$$Q_2(x,y) : -x L_2 y$$

Language-Theoretic Lemma 1:

$$Q_1 \sqsubseteq Q_2 \text{ iff } L_1 \subseteq L_2$$

Proof: Consider a database

$$a \cdot \underline{l_1} \cdots \underline{l_k} \cdot b$$
 with $l_1 \cdots l_k \in L_1$

Corollary: Path-Query Containment is

- undecidable for context-free path queries
- decidable for regular path queries.

Regular Path Queries

Observations:

- A fragment of Transitive-Closure Logic
- A fragment of binary Datalog

```
- Concatenation: E(x,y):-E_1(x,z),E_2(z,y)
```

- Union:
$$E(x,y) : - E_1(x,y)$$

 $E(x,y) : - E_2(x,y)$

- Transitive Closure: P(x,y):=E(x,z) P(x,y):=E(x,z), E(z,y)

Consequence:

- Data complexity: NLOGSPACE
- Expression complexity: PTIME

Containment: PSPACE-complete, via nondeterministic automata (Stockmeyer, 1973).

Language Containment – Upper Bound

Lemma: $L(E_1) \subseteq L(E_2)$ iff $L(E_1) - L(E_2) = \emptyset$

Algorithm for checking whether $L(E_1) \subseteq L(E_2)$:

- 1. Construct NFAs A_i such that $L(A_i) = L(E_i)$ linear blow-up.
- 2. Construct $\overline{A_2}$ such that $L(\overline{A_2}) = \Sigma^* L(A_2)$ exponential blow-up.
- 3. Construct $A = A_1 \times \overline{A_2}$ such that $L(A) = L(E_1) L(E_2) quadratic blow-up$.
- 4. Check if there is a path from start state to final state in A NLOGSPACE.

Bottom Line: *PSPACE*

Two-Way RPQs

Extended Alphabet:
$$\Lambda^- = \{a^- : a \in \Lambda^+\}$$

$$\Lambda = \Lambda^+ \cup \Lambda^-$$

Inverse Roles:

$$Part(x,y)$$
: y part of x

$$Part^-(x,y)$$
: x part of y

Example: Step Siblings

$$Q(x,y) : x [(father^- \cdot father) + (mother^- \cdot mother)]^+ y$$

Containment: Two-way nondeterministic automata

- Hopcroft and Ullman, 1979: 2DFA
- Hopcroft, Motwani and Ullman, 2000: ???

2NFA

$$A = (\Sigma, S, S_0, \rho, F)$$

- Σ finite alphabet
- \bullet S finite state set
- $S_0 \subseteq S$ initial states
- \bullet $F \subseteq S$ final states
- $\rho: S \times \Sigma \to 2^{S \times \{-1,0,+1\}}$ transition function

Theorem: Rabin&Scott, Shepherdson, 1959

 $2NFA \equiv 1NFA$

2RPQ Containment

Difficulties:

- 2NFA → 1NFA: exponential blow-up
 - Consequence: Doubly exponential complementation
- Difference between query and language containment

```
-Q_1(x,y) : -x \ Parent \ yQ_2(x,y) : -x \ Parent \cdot Parent^- \cdot Parent \ y
```

-
$$Q_1 \sqsubseteq Q_2$$
 but $L(Parent \cdot Parent^- \cdot Parent)$

Back to Basics: 2NFA→1NFA

Theorem: Vardi, 1988

Let $A=(\Sigma,S,S_0,\rho,F)$ be a 2NFA. There is a 1NFA A^c such that

- $L(A^c) = \Sigma^* L(A)$
- $\bullet ||A^c|| \in 2^{O(||A||)}$

Proof: Guess a subset-sequence counterexample

 $a_0 \cdots a_{k-1} \not\in L(A)$ iff there is a sequence T_0, T_1, \cdots, T_k of subsets of S such that

- 1. $S_0 \subseteq T_0$ and $T_k \cap F = \emptyset$.
- 2. If $s \in T_i$ and $(t, +1) \in \rho(s, a_i)$, then $t \in T_{i+1}$, for $0 \le i < k$.
- 3. If $s \in T_i$ and $(t,0) \in \rho(s,a_i)$, then $t \in T_i$, for $0 \le i < k$.
- 4. If $s \in T_i$ and $(t, -1) \in \rho(s, a_i)$, then $t \in T_{i-1}$, for $0 < i \le k$.

Foldings

Definition: Let $u, v \in \Lambda^*$. We say that v folds onto u, denoted $v \rightsquigarrow u$, if v can be "folded" on u, e.g.,

$$abb^-bc \rightsquigarrow abc$$
.

Pictorially,
$$\xrightarrow{a} \cdot \xrightarrow{b} \cdot \xrightarrow{b} \cdot \xrightarrow{b} \cdot \xrightarrow{c} \longrightarrow \xrightarrow{a} \cdot \xrightarrow{b} \cdot \xrightarrow{c}$$

Definition: Let E be an RE over Λ . Then $fold(E) = \{v : v \leadsto u, u \in L(E)\}$.

Language-Theoretic Lemma 2:

Let
$$Q_1(x,y) : -x E_1 y$$

 $Q_2(x,y) : -x E_2 y$

be 2RPQs. Then $Q_1 \sqsubseteq Q_2$ iff $L(E_1) \subseteq fold(E_2)$.

2RPQ containment

Theorem: Let E be an RE over Λ . There is a 2NFA \tilde{A}_E such that

- $L(\tilde{A}_E) = fold(E)$
- $||\tilde{A}_E|| \in O(||E||)$

Containment $Q_1(x,y) : -x E_1 y$ $Q_2(x,y) : -x E_2 y$

TFAE

- \bullet $Q_1 \sqsubseteq Q_2$
- $L(E_1) \subseteq fold(E_2)$.
- $L(E_1) \subseteq L(\tilde{A}_{E_2})$.
- $L(E_1) \cap L(\tilde{A}_{E_2}^c) = \emptyset$
- $L(A_{E_1} \times \tilde{A}_{E_2}^c) = \emptyset$

Bottom-line: 2RPQ containment is PSPACE-complete.

View-Based Query Processing

- Global database: B over Λ^+
- Views: $\{V_1, \ldots, V_n\}$, V_i is a query
- View extensions: $\{\mathcal{E}_1, \dots, \mathcal{E}_n\}$, $\mathcal{E}_i \subseteq V_i(B)$
- Global query Q over Λ
- Local query over V_1, \ldots, V_n

Query Processing

- 1. View-based query answering: approximate Q(B) using view-extension information.
- 2. View-based query rewriting: approximate global query by a local query based on view definitions
- 3. View-based query losslessness: Compare global query with its view-based approximation.
- 4. View-based query containment: Compare view-based approximations of two global queries.

View-Based Query Rewriting

- Global database: B over Λ^+
- Views: $\{V_1, \ldots, V_n\}$, V_i is a query
- View extensions: $\{\mathcal{E}_1, \dots, \mathcal{E}_n\}$, $\mathcal{E}_i \subseteq V_i(B)$
- ullet Global query Q over Λ
- Local query over V_1, \ldots, V_n

Query Rewriting

$$\Delta^+ = \{v_1, \dots, v_n\}$$
$$\Delta = \Delta^+ \cup \Delta^-$$

• Find regular expression \mathcal{E} over Δ such that $\mathcal{E}[v_i \mapsto V_i, v_i^- \mapsto rev(V_i)] \sqsubseteq Q$.

- $rev(v) = v^-$, $rev(v^- = v)$, $rev(e_1 + e_2) = rev(e_1) + rev(e_2)$, $rev(e_1; e_2) = rev(e_2)$; $rev(e_1)$, $rev(e^*) = rev(e)^*$
- Find maximal such \mathcal{E} .

Example: Q = abcd, $V_1 = ab$, $V_2 = cd$: $Q = V_1V_2$

Counterexample Method

Candidate Rewriting: $w = a_1 \dots a_k \in \Delta^k$

- w is a bad rewriting if $w[v_i \mapsto V_i, v_i^- \mapsto rev(V_i)] \not\sqsubseteq Q$.
- w is a **bad** rewriting if there are **witnesses** $w_1, \ldots, w_k \in \Lambda^*$ such that $w_1 \ldots w_k \not\sqsubseteq L(Q)$, where
 - $w_i \in L(V_j)$ if $a_i = v_j$. - $w_i \in L(rev(V_j))$ if $a_i = v_j^-$.
- $a_1w_1 \dots a_kw_k$: counterexample word

Example: Q = abcd, $V_1 = ab$, $V_2 = cd$

- v_1v_1 : bad rewriting, v_1v_2 : good rewriting
- $w_1 = ab$, $w_2 = ab$: witnesses
- $v_1w_1v_1w_2$: counterexample word

Regular Counterexamples

Counterexample Word: $a_1w_1 \dots a_kw_k$

1.
$$w_i \in L(V_j)$$
 if $a_i = v_j$.

2.
$$w_i \in L(rev(V_j))$$
 if $a_i = v_j^-$.

3.
$$w_1 \dots w_k \not\sqsubseteq L(Q)$$

Checking counterexample words with 2NFA:

- Check (1) and (2) with 2NFA for V_j
- Use folding technique to construct 2NFA to check $w_1 \dots w_k \sqsubseteq L(Q)$ and then complement.

Complexity: exponential

From Counterexamples to Rewritings

Constructing Good Rewritings

- 1. Construct 1NFA A_1 for counterexample words (exponential).
- 2. Project out witness words to get 1NFA A_2 for bad rewritings $(a_1w_1 \ldots a_kw_k \mapsto a_1 \ldots a_k)$ (*linear*).
- 3. Complement A_2 to get 1NFA A_3 for good rewritings (exponential).

Theorem:

- Construction yields maximal rewriting (represented by a 1DFA).
- Doubly expoential complexity is optimal.
- ullet Checking whether the rewriting is equivalent to Q is 2EXPSPACE-complete.

Conjunctive Queries

Conjunctive Query: Existential, conjunctive, positive first-order logic, i.e., first-order logic without \forall , \vee , \neg ; written as a rule

$$Q(x_1,\ldots,x_n):-R_1(x_3,y_2,x_4),\ldots,R_k(x_2,y_3)$$

Significance:

- Most common SQL queries (Select-Project-Join)
- Core of Datalog

Example:

$$Triangle(x, y, z) := Edge(x, y), Edge(y, z), Edge(z, x)$$

Conjunctive Query Containment

Canonical Database B^Q :

- Each variable in Q is a distinct element
- Each subgoal $R(x_3,y_2,x_4)$ of Q gives rise to a tuple $R(x_3,y_2,x_4)$ in B^Q

Fact: (Chandra and Merlin, 1977)

For conjunctive queries Q_1 and Q_2 , TFAE:

- The containment $Q_1 \sqsubseteq Q_2$ holds
- There is a homomorphism $h:B^{Q_2}\to B^{Q_1}$ that is the identity on distinguished variables.

Conjunctive 2RPQ

C2RPQ: Core of all semistructured query languages

$$Q(x_1,\ldots,x_n):-y_1E_1z_1,\ldots,y_mE_mz_m$$

• E_i - 2RPQ

Intuition:

- C2RPQs are obtained from CQ by replacing atoms with REs over Λ .
- C2RPQs are Select-Project-"Regular Join" queries.

Example:

$$Q(x,y) : -z \quad (Wing \cdot Part^+ \cdot Nut) \quad x,$$
 $z \quad (Wing \cdot Part^+ \cdot Nut) \quad y$

C2RPQ Containment

Difficulty: Earlier techniques do not apply

- No canonical database
- No language-theoretic lemma

Solution: Combine and extend earlier ideas

- Infinite family of canonical databases
 - Each variable in Q is a distinct element
 - Each subgoal $y_i E_i z_i$ of Q is replaced by a simple path labeled by a word in $L(E_i)$.
- Represent canonical databases as words over a larger alphabet
- Develop automata-theoretic characterization of C2RPQ containment.

Bottom-line: C2RPQ containment is EXPSPACE-complete.

In Conclusion

Regular queries:

- A rich but well-behaved fragment of Datalog
- Of special interest for semistructured data
- Beautiful application of classical formal-language theory
- Novel theory of regular paths in labeled graphs

Research Question: What is the ultimate class of regular queries?

- RPQs
- 2RPQs
- C2RPQs
- UC2RPQs

• . . .