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Motivation

• Many applications involve data that is uncertain
 (approximate, probabilistic, inexact, incomplete,  
 imprecise, fuzzy, inaccurate, ...)

• Many of the same applications need to track  
the lineage of their data

 Neither uncertainty nor lineage are      
supported by conventional Database 
Management Systems (DBMSs)

Coincidence or Fate?Coincidence or Fate?
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Sample Applications

Deduplication
• Uncertainty: Match and merge
• Lineage: Source records

Information extraction
• Uncertainty: Extracted labels and values
• Lineage: Original context

Information integration
• Uncertainty: Inconsistent information
• Lineage: Original sources
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Sample Applications

Scientific experiments
• Uncertainty: Captured (and derived) data

• Lineage: Layers of views

Sensor data
• Uncertainty: Sensor values, missing readings

• Lineage: Original readings, views
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Claim

 The connection between uncertainty and 
lineage goes deeper than just a shared need 
by several applications

Coincidence or Fate?Coincidence or Fate?
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Lineage and Uncertainty

Lineage...
• Enables simple and consistent representation of 

uncertain data

• Correlates uncertainty in query results with 
uncertainty in the input data

• Can make computation over uncertain data more 
efficient

Applications use lineage to reduce or resolve 
uncertainty
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Goal

A new kind of DBMS in which:
1. Data
2. Uncertainty
3. Lineage

are all first-class interrelated concepts

TrioTrio}
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The Trio Trio

1. Data Model
 Simplest extension to relational model that’s 

sufficiently expressive

2. Query Language
 Simple extension to SQL with well-defined 

semantics and intuitive behavior

3. System
 A complete open-source DBMS that people            

want to use
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The Present

1. Data Model
 Uncertainty-Lineage Databases (ULDBs)                         

2. Query Language
 TriQL

3. System
 First prototype built on top of standard DBMS
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Running Example: Crime-Solving

Saw(witness,car)    // may be uncertain

Drives(person,car)  // may be uncertain

Suspects(person) = πperson(Saw⋈ Drives)
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Data Model: Uncertainty

An uncertain database represents a set of
possible instances

• Amy saw either a Honda or a Toyota

• Jimmy drives a Toyota, a Mazda, or both

• Betty saw an Acura with confidence 0.5 or a 
Toyota with confidence 0.3

• Hank is a suspect with confidence 0.7



12

Our Model for Uncertainty

1. Alternatives

2. ‘?’ (Maybe) Annotations

3. Confidences
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Our Model for Uncertainty

1. Alternatives: uncertainty about value

2. ‘?’ (Maybe) Annotations

3. Confidences

Saw (witness,car)
(Amy, Honda) ∥ (Amy, Toyota) ∥ (Amy, Mazda)

witness car
Amy { Honda, Toyota, Mazda }

=

Three possible
instances
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Six possible
instances

Our Model for Uncertainty

1. Alternatives

2. ‘?’ (Maybe): uncertainty about presence

3. Confidences

Saw (witness,car)
(Amy, Honda) ∥ (Amy, Toyota) ∥ (Amy, Mazda)

(Betty, Acura) ?
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Our Model for Uncertainty

1. Alternatives

2. ‘?’ (Maybe) Annotations

3. Confidences: weighted uncertainty

Saw (witness,car)
(Amy, Honda): 0.5 ∥ (Amy,Toyota): 0.3 ∥ (Amy, Mazda): 0.2

(Betty, Acura): 0.6 ?

Six possible instances, 
each with a probability
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Models for Uncertainty

• Our model (so far) is not especially new

• We spent some time exploring the space of 
models for uncertainty [two papers]

• Tension between understandability and 
expressiveness
– Our model is understandable

– But it is not complete, or even closed under    
common operations
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Closure and Completeness

Completeness
Can represent all sets of possible instances

Closure
Can represent results of operations

Note: Completeness ⇒ Closure
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Our Model is Not Closed

Saw (witness,car)
(Cathy, Honda) ∥ (Cathy, Mazda)

Drives (person,car)
(Jimmy, Toyota) ∥ (Jimmy, Mazda)

(Billy, Honda) ∥ (Frank, Honda)

(Hank, Honda)

Suspects
Jimmy

Billy ∥ Frank

Hank

Suspects = πperson(Saw⋈ Drives)

?
?
?

Does not correctly
capture possible
instances in the
result

CANNOT
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to the Rescue

Lineage (provenance): “where data came from”
• Internal lineage

• External lineage

In Trio: A function λ from alternatives to other 
alternatives (or external sources)

Lineage
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Example with Lineage

ID Saw (witness,car)
11 (Cathy, Honda) ∥ (Cathy, Mazda)

ID Drives (person,car)
21
22
23

(Jimmy, Toyota) ∥ (Jimmy, Mazda)
(Billy, Honda) ∥ (Frank, Honda)

(Hank, Honda)

ID Suspects
31
32
33

Jimmy
Billy ∥ Frank

Hank

?
?
?

Suspects = πperson(Saw⋈ Drives)

λ(31) = (11,2),(21,2)
λ(32,1) = (11,1),(22,1);  λ(32,2) = (11,1),(22,2)
λ(33) = (11,1), 23

Correctly captures 
possible instances in
the result
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Trio Data Model 

[paper]

1. Alternatives

2. ‘?’ (Maybe) Annotations

3. Confidences

4. Lineage

ULDBs are closed and complete

Uncertainty-Lineage Databases (ULDBs)Uncertainty-Lineage Databases (ULDBs)
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ULDBs: Lineage

Conjunctive lineage sufficient for most operations

• Disjunctive lineage for duplicate-elimination

• Negative lineage for difference
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ULDBs: Minimality

A ULDB relation R represents a set of possible 
instances

Does every tuple in R appear in some possible 
instance?  (no extraneous tuples)

Does every maybe-tuple in R not appear in 
some possible instance? (no extraneous ‘?’s)

Also

Data-minimalityData-minimality

Lineage-minimalityLineage-minimality
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Data Minimality Examples

Extraneous ‘?’

. . .
10 (Billy, Honda) ∥ (Frank, Honda)

. . .

. . .
20 Billy  ∥ Frank

. . .
? λ(20,1)=(10,1); λ(20,2)=(10,2)
extraneous



25

Data Minimality Examples

Extraneous tuple

(Diane, Mazda) ∥ (Diane, Acura)

Diane
extraneous

(Diane, Mazda) (Diane, Acura)

?
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ULDBs: Membership Questions

Does a given tuple t appear in some (all)
possible instance(s) of R ?

Is a given table T one of (all of) the possible 
instances of R ?

Polynomial algorithms based on data-minimizationPolynomial algorithms based on data-minimization

NP-HardNP-Hard



27

Non-Theorists...

Wake Back Up!
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Querying ULDBs

• Simple extension to SQL

• Formal semantics, intuitive meaning

• Query uncertainty, confidences, and lineage

TriQLTriQL
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Initial TriQL Example

ID Saw (witness,car)
11 (Cathy, Honda) ∥ (Cathy, Mazda)

ID Drives (person,car)
21
22
23

(Jimmy, Toyota) ∥ (Jimmy, Mazda)
(Billy, Honda) ∥ (Frank, Honda)

(Hank, Honda)

SELECT Drives.person INTO Suspects
FROM Saw, Drives
WHERE Saw.car = Drives.car

ID Suspects
31
32
33

Jimmy
Billy ∥ Frank

Hank

?
?
?

λ(31) = (11,2),(21,2)
λ(32,1)=(11,1),(22,1); λ(32,2)=(11,1),(22,2)
λ(33) = (11,1), 23
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Formal Semantics

Query Q on ULDB D

DD

D1, D2, …, DnD1, D2, …, Dn

possible
instances

Q on each
instance

representation
of instances

Q(D1), Q(D2), …, Q(Dn)Q(D1), Q(D2), …, Q(Dn)

D’D’
implementation of Q

operational semantics
D + ResultD + Result
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TriQL: Querying Confidences

Built-in function: Conf()

SELECT Drives.person INTO Suspects
FROM Saw, Drives
WHERE Saw.car = Drives.car
AND Conf(Saw) > 0.5 AND Conf(Drives) > 0.8
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TriQL: Querying Lineage

Built-in join predicate: Lineage()

SELECT Saw.witness INTO AccusesHank
FROM Suspects, Saw
WHERE Lineage(Suspects,Saw)
AND Suspects.person = ‘Hank’

Also Lineage*()
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Operational Semantics

Over conventional relational database:
For each tuple in cross-product of X1, X2, ..., Xn

1. Evaluate the predicate

2. If true, project attr-list to create result tuple

3. If INTO clause, insert into table

SELECT attr-list [ INTO table ]
FROM X1, X2, ..., Xn
WHERE predicate
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Operational Semantics

Over ULDB:
For each tuple in cross-product of X1, X2, ..., Xn

1. Create “super tuple” T from all combinations of 
alternatives

2. Evaluate predicate on each alternative in T ; 
keep only the true ones

3. Project attr-list on each alternative to create 
result tuple

4. Details: ‘?’, lineage, confidences

SELECT attr-list [ INTO table ]
FROM X1, X2, ..., Xn
WHERE predicate
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Operational Semantics: Example

SELECT Drives.person
FROM Saw, Drives
WHERE Saw.car = Drives.car

Saw (witness,car)
(Cathy, Honda) ∥ (Cathy, Mazda)

Drives (person,car)
(Jim, Mazda) ∥ (Bill, Mazda)

(Hank, Honda)
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Operational Semantics: Example

SELECT Drives.person
FROM Saw, Drives
WHERE Saw.car = Drives.car

Saw (witness,car)
(Cathy, Honda) ∥ (Cathy, Mazda)

Drives (person,car)
(Jim, Mazda) ∥ (Bill, Mazda)

(Hank, Honda)

(Cathy,Honda,Jim,Mazda)∥(Cathy,Honda,Bill,Mazda)∥(Cathy,Mazda,Jim,Mazda)∥(Cathy,Mazda,Bill,Mazda)
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Operational Semantics: Example

SELECT Drives.person
FROM Saw, Drives
WHERE Saw.car = Drives.car

Saw (witness,car)
(Cathy, Honda) ∥ (Cathy, Mazda)

Drives (person,car)
(Jim, Mazda) ∥ (Bill, Mazda)

(Hank, Honda)

(Cathy,Honda,Jim,Mazda)∥(Cathy,Honda,Bill,Mazda)∥(Cathy,Mazda,Jim,Mazda)∥(Cathy,Mazda,Bill,Mazda)
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Operational Semantics: Example

SELECT Drives.person
FROM Saw, Drives
WHERE Saw.car = Drives.car

Saw (witness,car)
(Cathy, Honda) ∥ (Cathy, Mazda)

Drives (person,car)
(Jim, Mazda) ∥ (Bill, Mazda)

(Hank, Honda)

(Cathy,Honda,Jim,Mazda)∥(Cathy,Honda,Bill,Mazda)∥(Cathy,Mazda,Jim,Mazda)∥(Cathy,Mazda,Bill,Mazda)
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Operational Semantics: Example

(Cathy,Honda,Jim,Mazda)∥(Cathy,Honda,Bill,Mazda)∥(Cathy,Mazda,Jim,Mazda)∥(Cathy,Mazda,Bill,Mazda)

SELECT Drives.person
FROM Saw, Drives
WHERE Saw.car = Drives.car

Saw (witness,car)
(Cathy, Honda) ∥ (Cathy, Mazda)

Drives (person,car)
(Jim, Mazda) ∥ (Bill, Mazda)

(Hank, Honda)

(Cathy,Honda,Hank,Honda) ∥ (Cathy,Mazda,Hank,Honda)
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Operational Semantics: Example

(Cathy,Honda,Jim,Mazda)∥(Cathy,Honda,Bill,Mazda)∥(Cathy,Mazda,Jim,Mazda)∥(Cathy,Mazda,Bill,Mazda)

SELECT Drives.person
FROM Saw, Drives
WHERE Saw.car = Drives.car

Saw (witness,car)
(Cathy, Honda) ∥ (Cathy, Mazda)

Drives (person,car)
(Jim, Mazda) ∥ (Bill, Mazda)

(Hank, Honda)

(Cathy,Honda,Hank,Honda) ∥ (Cathy,Mazda,Hank,Honda)
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Operational Semantics: Example

(Cathy,Honda,Jim,Mazda)∥(Cathy,Honda,Bill,Mazda)∥(Cathy,Mazda,Jim,Mazda)∥(Cathy,Mazda,Bill,Mazda)

SELECT Drives.person
FROM Saw, Drives
WHERE Saw.car = Drives.car

Saw (witness,car)
(Cathy, Honda) ∥ (Cathy, Mazda)

Drives (person,car)
(Jim, Mazda) ∥ (Bill, Mazda)

(Hank, Honda)

(Cathy,Honda,Hank,Honda) ∥ (Cathy,Mazda,Hank,Honda)
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Operational Semantics: Example

SELECT Drives.person INTO Suspects
FROM Saw, Drives
WHERE Saw.car = Drives.car

Saw (witness,car)
(Cathy, Honda) ∥ (Cathy, Mazda)

Drives (person,car)
(Jim, Mazda) ∥ (Bill, Mazda)

(Hank, Honda)

Suspects
Jim ∥ Bill

Hank
?
?
λ( ) = ...
λ( ) = ...
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Confidences

Confidences supplied with base data

Trio computes confidences on query results
• Default probabilistic interpretation
• Can choose to plug in different arithmetic

Saw (witness,car)
(Cathy, Honda): 0.6 ∥ (Cathy, Mazda): 0.4

Drives (person,car)
(Jim, Mazda): 0.3 ∥ (Bill, Mazda): 0.6

(Hank, Honda)

Suspects
Jim: 0.12 ∥ Bill: 0.24

Hank: 0.6
?
?

?

0.3 0.4 

0.6 
ProbabilisticProbabilisticMin
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Confidence Computation

Previous approach (probabilistic databases)
• Each operator computes confidences during 

query execution
• Only certain query plans allowed

In ULDBs
 Confidence of alternative A is function of 

confidences in λ*(A)

Our approach
• Use any query plan
• Compute confidences on-demand based on 

lineage
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Additional Query Constructs

• “Horizontal subqueries”
Refer to tuple alternatives as a relation

• Unmerged (horizontal duplicates)

• Flatten, GroupAlts

• NoLineage, NoConf, NoMaybe

• Query-computed confidences

• Data modification statements
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Final Example Query

PrimeSuspect (crime#, accuser, suspect)
(1, Amy, Jimmy) ∥ (1, Betty, Billy) ∥ (1, Cathy, Hank)

(2, Cathy, Frank) ∥ (2, Betty, Freddy)

person score
Amy
Betty

Cathy

10
15

5

Suspects
Jimmy: 0.33 ∥ Billy: 0.5 ∥ Hank: 0.166

Frank: 0.25 ∥ Freddy: 0.75

Credibility

List suspects with conf values based on accuser credibility
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Final Example Query

PrimeSuspect (crime#, accuser, suspect)
(1, Amy, Jimmy) ∥ (1, Betty, Billy) ∥ (1, Cathy, Hank)

(2, Cathy, Frank) ∥ (2, Betty, Freddy)

person score
Amy
Betty

Cathy

10
15

5

Suspects
Jimmy: 0.33 ∥ Billy: 0.5 ∥ Hank: 0.166

Frank: 0.25 ∥ Freddy: 0.75

Credibility

SELECT suspect, score/[sum(score)] as conf
FROM (SELECT suspect,

(SELECT score FROM Credibility C
WHERE C.person = P.accuser)

FROM PrimeSuspect P)
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Final Example Query

PrimeSuspect (crime#, accuser, suspect)
(1, Amy, Jimmy) ∥ (1, Betty, Billy) ∥ (1, Cathy, Hank)

(2, Cathy, Frank) ∥ (2, Betty, Freddy)

person score
Amy
Betty

Cathy

10
15

5

Suspects
Jimmy: 0.33 ∥ Billy: 0.5 ∥ Hank: 0.166

Frank: 0.25 ∥ Freddy: 0.75

Credibility

SELECT suspect, score/[sum(score)] as conf
FROM (SELECT suspect,

(SELECT score FROM Credibility C
WHERE C.person = P.accuser)

FROM PrimeSuspect P)
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Final Example Query

PrimeSuspect (crime#, accuser, suspect)
(1, Amy, Jimmy) ∥ (1, Betty, Billy) ∥ (1, Cathy, Hank)

(2, Cathy, Frank) ∥ (2, Betty, Freddy)

person score
Amy
Betty

Cathy

10
15

5

Suspects
Jimmy: 0.33 ∥ Billy: 0.5 ∥ Hank: 0.166

Frank: 0.25 ∥ Freddy: 0.75

Credibility

SELECT suspect, score/[sum(score)] as conf
FROM (SELECT suspect,

(SELECT score FROM Credibility C
WHERE C.person = P.accuser)

FROM PrimeSuspect P)
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The Trio System

Version 1
Entirely on top of conventional DBMS

Surprisingly easy and complete, reasonably efficient
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The Trio System: Version 1

Lin:R aid table aid

R aid xid C

Relational DBMS

create trio table T(A,B)
select C into R ...

Trio
Metadata

Trio APITrio API
SQL commands

• Result cursors
• Traverse lineage

T aid xid A B
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Relation Encoding

aid xid
21 1 –2 Jim Mazda
22 1 –2 Bill Mazda

223

conf person car

–2 Hank Honda

Suspects
Jim  ∥ Bill

Hank

aid xid conf person
31
32 1 –1 Bill
33

Jim–11

2 –1 Hank

Saw (witness,car)
(Cathy, Honda)  ∥ (Cathy, Mazda)

Drives (person,car)
(Jim, Mazda)  ∥ (Bill, Mazda)

(Hank, Honda)

aid xid
11 1 –2 Cathy Honda

112

conf witness car

–2 Cathy Mazda

?
?

aidFr table aidTo
31 Saw 12

33 Saw 11

31 Drives 21
32 Saw
32 Drives

Drives33

12
22

23

Saw
Drives

Suspects
Lin:Suspects
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Relation Encoding with Confidences

aid xid
21 1 0.3 Jim Mazda
22 1 0.6 Bill Mazda

223

conf person car

1.0 Hank Honda

aid xid conf person
31

32 1 NULL Bill

33

JimNULL1

2 NULL Hank

Saw (witness,car)
(Cathy, Honda): 0.6 ∥ (Cathy, Mazda): 0.4

Drives (person,car)
(Jim, Mazda): 0.3 ∥ (Bill, Mazda): 0.6

(Hank, Honda)

aid xid
11 1 0.6 Cathy Honda

112

conf witness car

0.4 Cathy Mazda

Saw
Drives

Suspects

0.12 

0.24

0.6  
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Query Translation

Query Q into result table R

1. Run query Q’ to produce “super-result” R
 Q’ ≈ Q but adds aid/xid’s of source tuples, joins 

lineage tables when lineage() predicates

2. Group R into alternatives, generate xid’s
3. Move lineage data to lin:R
4. Compute confidences? (optional)
5. Add metadata: schemas, confidence info, 

lineage structure

Transient results: stop at 2, return cursor
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The Trio System: Version 1

Lin:R aid table aid

R aid xid C

Relational DBMS

create trio table T(A,B)
select C into R ...

Trio
Metadata

Trio APITrio API
SQL commands

• Result cursors
• Traverse lineage

T aid xid A B
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The Trio System: Version 1

Relational DBMS

create trio table T(A,B)
select C into R ...

Trio APITrio API

• Schema and table browsing
• Result browsing
• Explore lineage

Command-line clientCommand-line client

Lin:R aid table aid

R xid aid C
Trio

Metadata

T xid aid A B

GUI clientGUI client
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The Trio System: Version 2

Relational DBMS

create trio table T(A,B)
select C into R ...

• Schema and table browsing
• Result browsing
• Explore lineage

Specialized
Trio Processing

Specialized
Trio Structures Trio

Metadata

Trio APITrio API

Command-line clientCommand-line client GUI clientGUI client
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Current Topics

System
• Full query language
• Nice interface
• Performance experiments
• Demo applications

Algorithms: confidence computation, 
extraneous data, membership questions

• Minimize lineage traversal
• Memoization
• Batch computations
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Future Directions

Theory, Model, Algorithms
• Unlimited opportunities

System
• Storage, indexing, partitioning
• Statistics and query optimization

More features
• Top-K by confidence 
• Incomplete relations; continuous uncertainty; 

correlated uncertainty
• External lineage; update lineage; versioning



Search “stanford trio”
[overview paper]

Trio group:
Parag Agrawal, Omar Benjelloun, Anish Das Sarma,    

Chris Hayworth, Shubha Nabar,
Tomoe Sugihara, Jennifer Widom

Special thanks to:
Ashok Chandra, Alon Halevy, Jeff Ullman

but don’t forget
the lineage…
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