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The task is to solve the shortest path problem on a dynamic graph with 

directed but unweighted edges. Firstly the test harness sends the initial 

graph. The time spent on loading, pre-processing or indexing the initial 

graph will not count into the total execution time. 

Then the workload comes in batches. Each batch consists of three types of 

operations:

(1) A u v -- add an edge from vertex u to v.

(2) D u v -- delete the edge from u to v, if it exists.

(3) Q u v -- query the distance of the shortest path from u to v.

Our goal is to answer these queries correctly, and as quickly as possible.

We have tried to improve the performance from the following aspects:

• Reduce the overall search space for each query: Bidirectional-BFS.

• Reduce the number of basic operations per query: Bit Compression and 

Optimizing program’s spatial locality.

• Develop parallelism: Build Delta Graph to support fully concurrent query 

execution within a batch.

4. Edge List’s Bit Compression
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Bidirectional-BFS instead of naïve BFS: To reduce the search 

space of each query, we search from both forward direction and backward 

direction.

Decision-making of exploration direction : At each iteration, we 

select the direction of smaller sum of degrees to explore first.

Trick: We calculate the initial graph’s degree variance offline. If the 

degree variance is small(implies 𝐷𝑒𝑔𝑟𝑒𝑒𝑆𝑢𝑚 ∝ 𝑁𝑜𝑑𝑒𝑁𝑢𝑚, e.g. roadmap 

graph), we can use 𝑁𝑜𝑑𝑒𝑁𝑢𝑚 to save 𝐷𝑒𝑔𝑟𝑒𝑒𝑆𝑢𝑚’s online computing cost.

3. Bidirectional-BFS

Compression of adjacent edge list: offset field + state field

• Reduce space cost(however we do not care). In best case, 𝑀′ = 𝑀/8
(for 64-bit integer, 𝑀/64).

• Reduce query’s execution time cost. Because we also maintain the 

visited vertex set in this compression format during Bidirectional-BFS.

• In worst case, 𝑀′ = 𝑀(𝑐𝑜𝑚𝑝_𝑟𝑎𝑡𝑖𝑜 = 1.0). For example, vertex 1 has 

forward neighbor vertices {64, 128, 192, 256}. It also needs four 64-bit 

integer to store the state fields.

• Here we propose an open question: Find a vertex ID reassignment 

function(a bijection from N to N) that minimize 𝑐𝑜𝑚𝑝_𝑟𝑎𝑡𝑖𝑜.

• In our implementation, we adopt a greedy strategy:

• Step 1: Sort vertices by their backward edge degree in 

descending order in 𝑉𝑑.

• Step 2: Enumerate vertex 𝑣 in 𝑉𝑑 in order, and assign new ID 

continuously for 𝑣’s backward neighbor vertices.

Note: Through the bit compression technique, vertices with large degree 

can be explored more efficiently, because we can process its neighbors 

once a batch when they are compressed into one 64-bit integer. 

Therefore, this technique improves performance significantly for social 

network graphs and paper-citation network graphs.

5. Fully Concurrent Query Execution Mechanism

Delta Graph: When processing a batch, we maintain a Delta Graph over 

all the A/D operations. The Delta Graph preserves not only updated edges 

in this batch, but also each edge's A/D time stamp list in order. 

For example, if the edge 𝑒 𝑣2, 𝑣3 is deleted at time 𝑡2, and added back at 

time 𝑡4, then its time stamps are 𝑡2, 𝐷 and 𝑡4, 𝐴 . Furthermore, if an 

edge already exists in the version of graph before this batch, we add 

𝑡0, 𝐴 to the head of its time stamp list. Otherwise, we add 𝑡0, 𝐷 .  

Finally its A/D time stamp list is 𝑡0, 𝐴 , 𝑡2, 𝐷 , 𝑡4, 𝐴 .

Steps of processing a batch: 

• S1: Read in this batch’s operation list.

• S2: Build Delta Graph over A/D operations.

• S3: Delete edges of D operations in Data Graph. Therefore, all the rest 

edges in Data Graph can be explored "safely" within this batch's queries.

• S4: Execute all queries concurrently on “Safe" Data Graph + Delta Graph.

• S5: Output answers sequentially.

• S6: Add edges of A operations to Data Graph.

6. Optimizing Spatial Locality

• Rearrange graph's storage in memory: Neighbor vertices in each 

vertex's adjacent edge list are arranged continuously in physical address. 

Improvement on memory locality can reduce the cache miss rate.

• Reorder graph’s bandwidth: Graphs with lower graph bandwidth have a 

better locality. When the Bit Compression strategy does not work well 

with sparse graphs(e.g. roadmap graph), we reorder the initial graph by 

Reverse Cuthill-McKee Algorithm to reduce the graph’s bandwidth.

• Warmup Cache: Before begin processing workload batches, we execute 

a batch of randomly generated queries to warm up cache.

7. Third Party Libraries

• Jemalloc 3.6.0

• Intel Threading Building Blocks 4.3


