
RESEARCH POSTER PRESENTATION DESIGN © 2012

www.PosterPresentations.com

1. Task Description

2. Solution Overview

Institute of Computer Science and Technology, Peking University

Shuo Han, Jiaze Chen, Lei Zou(advisor)

ACM SIGMOD Programming Contest 2016

The task is to solve the shortest path problem on a dynamic graph with

directed but unweighted edges. Firstly the test harness sends the initial

graph. The time spent on loading, pre-processing or indexing the initial

graph will not count into the total execution time.

Then the workload comes in batches. Each batch consists of three types of

operations:

(1) A u v -- add an edge from vertex u to v.

(2) D u v -- delete the edge from u to v, if it exists.

(3) Q u v -- query the distance of the shortest path from u to v.

Our goal is to answer these queries correctly, and as quickly as possible.

We have tried to improve the performance from the following aspects:

• Reduce the overall search space for each query: Bidirectional-BFS.

• Reduce the number of basic operations per query: Bit Compression and

Optimizing program’s spatial locality.

• Develop parallelism: Build Delta Graph to support fully concurrent query

execution within a batch.

4. Edge List’s Bit Compression

{hanshuo, chenjiaze, zoulei}@pku.edu.cn

Team: gStreamPKU

Bidirectional-BFS instead of naïve BFS: To reduce the search

space of each query, we search from both forward direction and backward

direction.

Decision-making of exploration direction : At each iteration, we

select the direction of smaller sum of degrees to explore first.

Trick: We calculate the initial graph’s degree variance offline. If the

degree variance is small(implies 𝐷𝑒𝑔𝑟𝑒𝑒𝑆𝑢𝑚 ∝ 𝑁𝑜𝑑𝑒𝑁𝑢𝑚, e.g. roadmap

graph), we can use 𝑁𝑜𝑑𝑒𝑁𝑢𝑚 to save 𝐷𝑒𝑔𝑟𝑒𝑒𝑆𝑢𝑚’s online computing cost.

3. Bidirectional-BFS

Compression of adjacent edge list: offset field + state field

• Reduce space cost(however we do not care). In best case, 𝑀′ = 𝑀/8
(for 64-bit integer, 𝑀/64).

• Reduce query’s execution time cost. Because we also maintain the

visited vertex set in this compression format during Bidirectional-BFS.

• In worst case, 𝑀′ = 𝑀(𝑐𝑜𝑚𝑝_𝑟𝑎𝑡𝑖𝑜 = 1.0). For example, vertex 1 has

forward neighbor vertices {64, 128, 192, 256}. It also needs four 64-bit

integer to store the state fields.

• Here we propose an open question: Find a vertex ID reassignment

function(a bijection from N to N) that minimize 𝑐𝑜𝑚𝑝_𝑟𝑎𝑡𝑖𝑜.

• In our implementation, we adopt a greedy strategy:

• Step 1: Sort vertices by their backward edge degree in

descending order in 𝑉𝑑.

• Step 2: Enumerate vertex 𝑣 in 𝑉𝑑 in order, and assign new ID

continuously for 𝑣’s backward neighbor vertices.

Note: Through the bit compression technique, vertices with large degree

can be explored more efficiently, because we can process its neighbors

once a batch when they are compressed into one 64-bit integer.

Therefore, this technique improves performance significantly for social

network graphs and paper-citation network graphs.

5. Fully Concurrent Query Execution Mechanism

Delta Graph: When processing a batch, we maintain a Delta Graph over

all the A/D operations. The Delta Graph preserves not only updated edges

in this batch, but also each edge's A/D time stamp list in order.

For example, if the edge 𝑒 𝑣2, 𝑣3 is deleted at time 𝑡2, and added back at

time 𝑡4, then its time stamps are 𝑡2, 𝐷 and 𝑡4, 𝐴 . Furthermore, if an

edge already exists in the version of graph before this batch, we add

𝑡0, 𝐴 to the head of its time stamp list. Otherwise, we add 𝑡0, 𝐷 .

Finally its A/D time stamp list is 𝑡0, 𝐴 , 𝑡2, 𝐷 , 𝑡4, 𝐴 .

Steps of processing a batch:

• S1: Read in this batch’s operation list.

• S2: Build Delta Graph over A/D operations.

• S3: Delete edges of D operations in Data Graph. Therefore, all the rest

edges in Data Graph can be explored "safely" within this batch's queries.

• S4: Execute all queries concurrently on “Safe" Data Graph + Delta Graph.

• S5: Output answers sequentially.

• S6: Add edges of A operations to Data Graph.

6. Optimizing Spatial Locality

• Rearrange graph's storage in memory: Neighbor vertices in each

vertex's adjacent edge list are arranged continuously in physical address.

Improvement on memory locality can reduce the cache miss rate.

• Reorder graph’s bandwidth: Graphs with lower graph bandwidth have a

better locality. When the Bit Compression strategy does not work well

with sparse graphs(e.g. roadmap graph), we reorder the initial graph by

Reverse Cuthill-McKee Algorithm to reduce the graph’s bandwidth.

• Warmup Cache: Before begin processing workload batches, we execute

a batch of randomly generated queries to warm up cache.

7. Third Party Libraries

• Jemalloc 3.6.0

• Intel Threading Building Blocks 4.3

