
ACM SIGMOD 2016 Programming Contest (uoa_team)
Athanasios-Michail Karampatsis, Nikos Dimakopoulos, Georgios Alexandropoulos, Nikos Tzamos

Yannis Foufoulas

Department of Informatics and Telecommunications, University of Athens, Greece

MaDgIK LAB, http://www.madgik.di.uoa.gr

• Calculate shortest path on a dynamic directed unweighted graph.

• An initial graph is given during the preprocessing stages.

• When the main execution starts, batches of queries are processed

containing either updates or shortest path queries.

• Updates may concern insertions or deletions of edges.

• The results must be printed at the end of each batch.

Task description

• Use an Enhanced Bidirectional BFS to

calculate single-source shortest path.

• Parallelize shortest path queries to multiple

threads using multiversioning data

structures.

• Use heuristics to optimize multi-threading

and Bidirectional BFS.

Strategy

• A hash map is used to create a dense adjacency list.

• A variation of an adjacency list that achieves higher

cache locality is used to represent the whole graph.

• Two adjacency lists that keep the node names, along

with their updates (insertions or deletions) and a

version id are used to support multiversioning.
3

0

1

2

4

5

6

12

0

3

7

17

19

22

Nodes Children

Children of node 0

Children of node 1

MAXINT table 

Data Structures

Preprocessing

We addressed the following

problems :

Skew

A major problem when running

queries in parallel is skew. In

order to eliminate it, a single

concurrent queue is used and

all threads consume jobs from

this queue.

Locks

The concurrent queues are

slower when there are many

locks. This happens when there

are many light queries and the

threads request new jobs

continuously.

We solved this problem by

running light queries in single

thread mode. Queries on small

nodes are considered as light.

Small nodes are marked during

the preprocessing, and remain

small if no insertions have

been applied to their spanning

trees.

Multithreading 

strategy

• https://github.com/tghosgor/threadpool11 (LGPL v3.0)

• https://github.com/cameron314/concurrentqueue 
(Simplified BSD License)

Third party libraries used

• Search for super nodes (nodes with much more connections

than average). If there are super nodes in the graph

calculate also the number of grand children of every node,

to use as heuristic.

• Load graph

• Mark as small, nodes with spanning trees that

consist of less than 5 nodes.

.Validation Processing

query

Is a

shortest path 

query?

Is 

node 

small?

Yes
Add query to 

queue for being 

executed by the 

main thread

Super 

nodes?

Use number of 

grandchildren 

as heuristic

Use number of 

children as 

heuristic

Append insertion or deletion 

to the corresponding data 

structure and finish

Add query to 

concurrent queue for 

being executed by the 

threads

Explore the 

smaller side
Updates?

Visited from 

the other 

side?

Children?

Finish

Remove 

deleted edges

Add new edges

Yes

No
No

Yes

Nomulti versioning 

structureYes

No

No

Yes

No

Yes

Bidirectional BFS

Graph Representation


