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• Calculate shortest path on a dynamic directed unweighted graph.

• An initial graph is given during the preprocessing stages.

• When the main execution starts, batches of queries are processed

containing either updates or shortest path queries.

• Updates may concern insertions or deletions of edges.

• The results must be printed at the end of each batch.

Task description

• Use an Enhanced Bidirectional BFS to

calculate single-source shortest path.

• Parallelize shortest path queries to multiple

threads using multiversioning data

structures.

• Use heuristics to optimize multi-threading

and Bidirectional BFS.

Strategy

• A hash map is used to create a dense adjacency list.

• A variation of an adjacency list that achieves higher

cache locality is used to represent the whole graph.

• Two adjacency lists that keep the node names, along

with their updates (insertions or deletions) and a

version id are used to support multiversioning.
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Data Structures

Preprocessing

We addressed the following

problems :

Skew

A major problem when running

queries in parallel is skew. In

order to eliminate it, a single

concurrent queue is used and

all threads consume jobs from

this queue.

Locks

The concurrent queues are

slower when there are many

locks. This happens when there

are many light queries and the

threads request new jobs

continuously.

We solved this problem by

running light queries in single

thread mode. Queries on small

nodes are considered as light.

Small nodes are marked during

the preprocessing, and remain

small if no insertions have

been applied to their spanning

trees.

Multithreading 

strategy

• https://github.com/tghosgor/threadpool11 (LGPL v3.0)

• https://github.com/cameron314/concurrentqueue 
(Simplified BSD License)

Third party libraries used

• Search for super nodes (nodes with much more connections

than average). If there are super nodes in the graph

calculate also the number of grand children of every node,

to use as heuristic.

• Load graph

• Mark as small, nodes with spanning trees that

consist of less than 5 nodes.
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